* 1,100%!
* Clean
* Don't touch DS
* Experiment with dtype allocation
* skip test_load_save_without_tied_weights test
* A little faster
* Include proper upscaling?
* Fixup tests
* Potentially skip?
* Let's see if this fixes git history
* Maintain new dtype
* Fin
* Rm hook idea for now
* New approach, see what breaks
* stage
* Clean
* Stash
* Should be fin now, just need to mark failing models
* Clean up
* Simplify
* Deal with weird models
* Enc/Dec
* Skip w/ reason
* Adjust test
* Fix test
* one more test
* Keep experimenting
* Fix ref
* TO REMOVE: testing feedback CI
* Right push
* Update tests/utils/test_modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* disable
* Add new func
* Test nits from Amy
* Update src/transformers/modeling_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Adjust comment
* Adjust comment on skip
* make private
* Fin
* Should be a not flag
* Clarify and rename test
---------
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* cast image features to model.dtype where needed to support FP16 or other precision in pipelines
* Update src/transformers/pipelines/image_feature_extraction.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use .to instead
* Add FP16 pipeline support for zeroshot audio classification
* Remove unused torch imports
* Add docs on FP16 pipeline
* Remove unused import
* Add FP16 tests to pipeline mixin
* Add fp16 placeholder for mask_generation pipeline test
* Add FP16 tests for all pipelines
* Fix formatting
* Remove torch_dtype arg from is_pipeline_test_to_skip*
* Fix format
* trigger ci
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Repeating an important warning in the chat template docs
* Update docs/source/en/chat_templating.md
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Reword for clarity
* Reword for clarity
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Add siglip loss function
* Update docs
* Enable training tests
[experimental] enable GC training tests as it has worked for my own data
* Remove test_training* overrides to enable training tests
[run_slow] siglip
* Skip training tests for Siglip text model and ImageClassificationModel
[run_slow] siglip
* Skip GC training tests for SiglipForImageClassification
* Explicitly skip training tests for SiglipVisionModel
Add skip reason for training tests for SiglipTextModel
* Remove copied from to fix CI
* Update CometCallback to allow reusing of the running experiment
* Fixups
* Remove useless TODO
* Add checks for minimum version of the Comet SDK
* Fix documentation and links.
Also simplify how the Comet Experiment name is passed
* Add torch_empty_cache_steps to TrainingArguments
* Fix formatting
* Add torch_empty_cache_steps to docs on single gpu training
* Remove check for torch_empty_cache_steps <= max_steps
* Captalize Tip
* Be device agnostic
* Fix linting
* Fix documentation for Gemma2.
Model sizes and Blog post URL are wrong in the documentation.
* Update docs/source/en/model_doc/gemma2.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* squash into single commit
* run diff once more
* docstring
* tests
* minor chnages and ready to go
* Update src/transformers/models/llava_next_video/processing_llava_next_video.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/vipllava/test_modeling_vipllava.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [run-slow] llava-next-video
* [run-slow] llava-next-video
* [run-slow] llava_next_video
* fix two tests
* fix slow tests
* remove logit checks due to numeric errors
* run test once more
* [run-slow] llava_next_video
* final try to pass the test
* [run-slow] llava_next_video
* [run-slow] llava_next_video
* [run-slow] llava_next_video
* style
* fix
* style
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* starting support for sdpa in `gptneox` models
* small comment on tests
* fix dropout
* documentation and style
* clarify concrete paths for reference
* generalise attn projections and rope application
added head mask check to sdpa mask creation
handle sdpa memory backend bug via own version flag
* update docs and style
* move dtype casting outside of general attn_projection_and_rope function
fix flash_attn_2 stuff
* more generic attn warning if output_attns or head_mask
* simplify head mask check by moving head mask creation to a later point
* remove copied llama artifact
* remove padding_mask from attention function signature
* removing unnecessary comments, only "save" attn implementation once
* [run_slow] gpt_neox
* Update perf_train_gpu_many.md
* Update docs/source/en/perf_train_gpu_many.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_train_gpu_many.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update chat template docs
* Minor bug in the version check
* Update docs/source/en/chat_templating.md
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Update docs/source/en/chat_templating.md
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Update docs/source/en/chat_templating.md
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Replace backticks with bolding because the doc builder was trying to parse them
* Replace backticks with bolding because the doc builder was trying to parse them
* Replace backticks with bolding because the doc builder was trying to parse them
* More cleanups to avoid upsetting the doc builder
* Add one more tip at the end
---------
Co-authored-by: Joshua Lochner <admin@xenova.com>
* Draft fast image processors
* Draft working fast version
* py3.8 compatible cache
* Enable loading fast image processors through auto
* Tidy up; rescale behaviour based on input type
* Enable tests for fast image processors
* Smarter rescaling
* Don't default to Fast
* Safer imports
* Add necessary Pillow requirement
* Woops
* Add AutoImageProcessor test
* Fix up
* Fix test for imagegpt
* Fix test
* Review comments
* Add warning for TF and JAX input types
* Rearrange
* Return transforms
* NumpyToTensor transformation
* Rebase - include changes from upstream in ImageProcessingMixin
* Safe typing
* Fix up
* convert mean/std to tesnor to rescale
* Don't store transforms in state
* Fix up
* Update src/transformers/image_processing_utils_fast.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Warn if fast image processor available
* Update src/transformers/models/vit/image_processing_vit_fast.py
* Transpose incoming numpy images to be in CHW format
* Update mapping names based on packages, auto set fast to None
* Fix up
* Fix
* Add AutoImageProcessor.from_pretrained(checkpoint, use_fast=True) test
* Update src/transformers/models/vit/image_processing_vit_fast.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Add equivalence and speed tests
* Fix up
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* First draft, still missing automatic function conversion
* First draft of the automatic schema generator
* Lots of small fixes
* the walrus has betrayed me
* please stop committing your debug breakpoints
* Lots of cleanup and edge cases, looking better now
* Comments and bugfixes for the type hint parser
* More cleanup
* Add tests, update schema generator
* Update tests, proper handling of return values
* Small docstring change
* More doc updates
* More doc updates
* Add json_schema decorator
* Clean up the TODOs and finish the docs
* self.maxDiff = None to see the whole diff for the nested list test
* add import for add_json_schema
* Quick test fix
* Fix something that was bugging me in the chat template docstring
* Less "anyOf" when unnecessary
* Support return types for the templates that need them
* Proper return type tests
* Switch to Google format docstrings
* Update chat templating docs to match new format
* Stop putting the return type in with the other parameters
* Add Tuple support
* No more decorator - we just do it implicitly!
* Add enum support to get_json_schema
* Update docstring
* Add copyright header
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/chat_templating.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/utils/chat_template_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/utils/chat_template_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add copyright header
* make fixup
* Fix indentation
* Reformat chat_template_utils
* Correct return value
* Make regexes module-level
* Support more complex, multi-line arg docstrings
* Update error message for ...
* Update ruff
* Add document type validation
* Refactor docs
* Refactor docs
* Refactor docs
* Clean up Tuple error
* Add an extra test for very complex defs and docstrings and clean everything up for it
* Document enum block
* Quick test fixes
* Stop supporting type hints in docstring to fix bugs and simplify the regex
* Update docs for the regex change
* Clean up enum regex
* Wrap functions in {"type": "function", "function": ...}
* Update src/transformers/utils/chat_template_utils.py
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* Temporary tool calling commit
* Add type hints to chat template utils, partially update docs (incomplete!)
* Code cleanup based on @molbap's suggestion
* Add comments to explain regexes
* Fix up type parsing for unions and lists
* Add custom exception types and adjust tests to look for them
* Update docs with a demo!
* Docs cleanup
* Pass content as string
* Update tool call formatting
* Update docs with new function format
* Update docs
* Update docs with a second tool to show the model choosing correctly
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
* Remove ConversationalPipeline and Conversation object, as they have been deprecated for some time and are due for removal
* Update not-doctested.txt
* Fix JA and ZH docs
* Fix JA and ZH docs some more
* Fix JA and ZH docs some more
* add tokenizer_summary to es/_toctree.yml
* add tokenizer_summary to es/
* fix link to Transformes XL in en/
* translate until Subword tokenization section
* fix GPT link in en/
* fix other GPT link in en/
* fix typo in en/
* translate the doc
* run make fixup
* Remove .md in Transformer XL link
* fix some link issues in es/
* fix typo
`mask` variable is not defined. probably a writing mistake. it should be `segmentation_map`. `segmentation_map` should be a `1` channel image rather than `RGB`.
[on a different note, the `mask_url` is the same as `raw_image`. could provide a better example.
* Fix has_file in offline mode
* harmonize env variable for offline mode
* Switch to HF_HUB_OFFLINE
* fix test
* revert test_offline to test TRANSFORMERS_OFFLINE
* Add new offline test
* merge conflicts
* docs
* Change in quantization docs
* Update overview.md
* Update docs/source/en/quantization/overview.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* clean-up
* Update src/transformers/cache_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/cache_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/cache_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixup
* Update tests/quantization/quanto_integration/test_quanto.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Update src/transformers/generation/configuration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* more suggestions
* mapping if torch available
* run tests & add 'support_quantized' flag
* fix jamba test
* revert, will be fixed by another PR
* codestyle
* HQQ and versatile cache classes
* final update
* typo
* make tests happy
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* add model_memory_anatomy to es/_toctree.yml
* copy model_memory_anatomy.md to es/
* translate first section
* translate doc
* chage forward activations
* fix sentence and and link to Trainer
* fix Trainer link
* Add MistralForTokenClassification
* Add tests and docs
* Add token classification for Mixtral and Qwen2
* Save llma for token classification draft
* Add token classification support for Llama, Gemma, Persimmon, StableLm and StarCoder2
* Formatting
* Add token classification support for Qwen2Moe model
* Add dropout layer to each ForTokenClassification model
* Add copied from in tests
* Update src/transformers/models/llama/modeling_llama.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Propagate suggested changes
* Style
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* add method
* change method name
* more comments
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fixup
* add docstrings and fix comment
* warn users on the de-quantized dtype
* Update src/transformers/quantizers/base.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/integrations/bitsandbytes.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* final suggestion - use private method
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Initial commit
* Just a copy of modeling_idefics.py that will be ported to TF
* - Prepend TF to the name of all classes
- Convert pytorch ops to TF (not all operations are converted yet)
* Add TF imports
* Add autotranslated files
* Add TF classes to model_tf_auto.py
* Add the TF classes in model_doc
* include auto-translated code
* Adopted from auto-translated version
* Add a forgotten super().build
* Add test code for TF version.
* Fix indentation and load pytorch weights for now
* Some fixes. Many tests are still failing but some are passing now.
- I have added TODO's for some of the hacks I made to unblock me
and I will address them soon
- I have the processing_idefics.py hacked in my view to support TF temporarily
* Add ALL_LAYERNORM_LAYERS to match pytorch
* Revert "Add ALL_LAYERNORM_LAYERS to match pytorch"
This reverts commit 7e0a35119b4d7a6284d04d8c543fba1b29e573c9 as it
is not needed in the tf implementation.
* Fix freeze_relevant_params()
* Some more fixes
* Fix test_attention_outputs
* Add tf stuff to processing_idefics.py
processing_idefics.py supports both pytorch and tf now.
test_processor_idefics.py for pytorch is passing, so i didn't break anything
but still some issues with tf. I also need to add tf tests in
test_processor_idefics.py.
* Pass return_tensors to image processing code and fix test
* Pass return_tensors to the image processor __init__
* Fix several test cases
- Make input to some of the forward pass of type `TFModelInputType`
- Decorate main layer forward pass with `@unpack_inputs`
- Decorate main layer with `@keras_serializable`
- Pass `inputs` to TFIdeficsModel
* Some more fixes forgotten in last commit
* Fix processing code and vision_tf.py
* Fix perceiver bug
* Import from
* Auto-add build() methods + style pass
* Fix build() errors due to `None` being passed as shape to some layers
* Change name in TFIdeficsForVisionText2Text to attribute in IdeficsForVisionText2Text
* Fix pytorch weights load for tf2
There were a lot of `name=` missing in weight initialization code.
* Attempt to fix CI
* Add back accidently removed line
* Remove torch-specific stuff from the TF test file
* make fix-copies, make style, remove autotranslated files
* Fixes to imports/docstrings
* Let's try the from future import in desperation
* Fix the core random_attention_mask fn to match the torch/flax behaviour
* Clean random_attention_mask up correctly
* Remove torch-only test
* Fix loss shape, couple of nits
* make style
* Don't test for OOB embeddings because IDEFICS uses those deliberately
* Fix loss computation to handle masking
* Fix test failures when flattening
* Fix some test failures
- Add cross attention gate which was missing and wasn't being passed arround
- Fix overwriting of image_attention_mask due to hack I had for dummy inputs
* Add a proper stateless scaled_dot_product_attention
* make style
* Adding missing attribute from the PyTorch version
* Small cleanups to decoupledlinearlayer in case that helps
* Pass epsilon to LayerNormalization
* Attemp to fix pytorch weight cross-loading for TFIdeficsEmbedding
* Fix a bug in TFIdeficsGatedCrossAttentionLayer
* Patching up build() methods
* Constant self.inv_freq
* Constant self.inv_freq
* First working version
The TF implementation works now, there was a bug in the TFIdeficsDecoupledLinear
where the weights were mis-intialized (in_features,out_features)
when it should be: (out_features, in_features)
I have tested this so far with tiny-random and idefics-9b-instruct
and gives correct output.
I also dumped the final outputs for both pytorch and TF
and they are identical.
* Fix some test failures
* remove print statement
* Fix return_tensors
* Fix CI test failure check_code_quality
* Attempt to fix CI failures by running `make fixup`
The hardcoded IDs in test_modeling_tf_idefics.py are for the integration
test and makes that file unreadable and should probably be moved to a seperate file.
* Attempt to fix tests_pr_documentation_tests
* Fix a test failure in test_image_processing_idefics.py
* Fix test test_pt_tf_model_equivalence
* Fix a few failures
* Tiny fix
* Some minor fixes
* Remove a duplicate test
* Override a few test failures for IDEFICS
- `test_keras_save_load` is passing now
- `test_compile_tf_model` is still failing
* Fix processing_idefics.py after rebase
* Guard import keras with is_tf_available
* fix check code quality
* fix check code quality
* Minor fixes
* Skip test_save_load temporarily
This test passed on my local box but fails on the CI, skipping
for now to see if there are other remaining failures on the CI.
* Run `ruff format tests src utils`
* Fix last failing test, `test_compile_tf_model`
* Add fixes for vision_tf.py
I forgot to add this file in last commit.
* Minor fixes
* Replace "<<<" with "<<" for doc tests
IDEFICS-9B is too big for doctest runner, so don't run it there
* Make code more readable
* Fix bug after code review
I added a layer_norm_eps to IdeficsConfig but I don't even need it
since the vision config has a layer_norm_eps.
* Fix after code review
Use original code tokenizer.convert_tokens_to_ids
* Keep PyTorch as the default return_tensors
* Fixes to modeling_tf after code review
* Fixes from code review
- Remove all references of `TF_IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST`
- Pass 1e-5 to LayerNormalization in perceiver
* Run ruff
* Undo a change
* Refactor processing code after Matt's suggestion
* Remove TODO's that aren't needed anymore
* For pytorch, Use original pytorch processing code from main
Since this PR is a TF port it shouldn't make any modifications
to pytorch IDEFICS code. This changes undo's the pytorch processing
modifications I made and uses original code from main.
* Update tests/models/idefics/test_modeling_idefics.py
* Update tests/models/idefics/test_modeling_tf_idefics.py
* Add missing imports for is_pt_tf_cross_test
* [DO NOT MERGE]: This is a commit for debugging and will be reverted
The cross test `test_pt_tf_model_equivalence` passes locally but
fails when running on the CI. This commit is to help debug that
and will be reverted.
* Revert "[DO NOT MERGE]: This is a commit for debugging and will be reverted"
This reverts commit 8f0d709ec5bd46685fb0b4259d914ffee794875b.
* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted
* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted
* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"
This reverts commit 998cc38b8c3d313bf5e5eb55a7f5b7b881897b89.
* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"
This reverts commit 1c695ac4219c4ae4d39b330b01744dc27deb7dd4.
* Don't skip test_save_load
IIRC test_save_load was also failing on the CI but not on my local
box, it might be easier to debug that on the CI first than the cross tests
* Debugging commit, will be reverted
* Revert "Debugging commit, will be reverted"
This reverts commit 8eafc8e41e20c4e95a3a90834f06a6e9f445e2d5.
* Override `test_save_load` and push model to save
Maybe this will help me repro this weird bug
* pass my repo_id
* add endpoint
* Pass a temp (write) token just for this CI
* Undo last few commits, still pushing to hub for model debugging
The issue seems to be with save_pretrained(), when I looked at the model saved
from the CI test failure it is basically empty and has no weights.
`self.save_weights(..)` seems to be failing in save_pretrained but needs
more debugging
* Add logging to modeling tf utils, will be reverted just for debugging
* Debugging, will revert
* Revert "Debugging, will revert"
This reverts commit 9d0d3075fb7c82d8cde3a5c76bc8f3876c5c55d3.
* Revert "Add logging to modeling tf utils, will be reverted just for debugging"
This reverts commit 774b6b7b1c17b3ce5d7634ade768f2f686cee617.
* Remove `test_save_load`
The CI failures are gone after my latest rebase, no idea why
but I was still saving the model to my hub on HF and the tf_model.h5
file now has everything.
* Run make fix-copies
* Run ruff format tests src utils
* Debugging commit, will be reverted
* Run ruff, also trigger CI run
* Run ruff again
* Undo debugging commit
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Create CodeAgent and ReactAgent
* Fix formatting errors
* Update documentation for agents
* Add custom errors, improve logging
* Support variable usage in ReactAgent
* add messages
* Add message passing format
* Create React Code Agent
* Update
* Refactoring
* Fix errors
* Improve python interpreter
* Only non-tensor inputs should be sent to device
* Calculator tool slight refactor
* Improve docstrings
* Refactor
* Fix tests
* Fix more tests
* Fix even more tests
* Fix tests by replacing output and input types
* Fix operand type issue
* two small fixes
* EM TTS
* Fix agent running type errors
* Change text to speech tests to allow changed outputs
* Update doc with new agent types
* Improve code interpreter
* If max iterations reached, provide a real answer instead of an error
* Add edge case in interpreter
* Add safe imports to the interpreter
* Interpreter tweaks: tuples and listcomp
* Make style
* Make quality
* Add dictcomp to interpreter
* Rename ReactJSONAgent to ReactJsonAgent
* Misc changes
* ToolCollection
* Rename agent's logger to self.logger
* Add while loops to interpreter
* Update doc with new tools. still need to mention collections
* Add collections to the doc
* Small fixes on logs and interpretor
* Fix toolbox return type
* Docs + fixup
* Skip doctests
* Correct prompts with improved examples and formatting
* Update prompt
* Remove outdated docs
* Change agent to accept Toolbox object for tools
* Remove calculator tool
* Propagate removal of calculator in doc
* Fix 2 failing workflows
* Simplify additional argument passing
* AgentType audio
* Minor changes: function name, types
* Remove calculator tests
* Fix test
* Fix torch requirement
* Fix final answer tests
* Style fixes
* Fix tests
* Update docstrings with calculator removal
* Small type hint fixes
* Update tests/agents/test_translation.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update tests/agents/test_python_interpreter.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/agents/default_tools.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/agents/tools.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update tests/agents/test_agents.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/bert/configuration_bert.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/agents/tools.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/agents/speech_to_text.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update tests/agents/test_speech_to_text.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update tests/agents/test_tools_common.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* pygments
* Answer comments
* Cleaning up
* Simplifying init for all agents
* Improving prompts and making code nicer
* Style fixes
* Add multiple comparator test in interpreter
* Style fixes
* Improve BERT example in documentation
* Add examples to doc
* Fix python interpreter quality
* Logging improvements
* Change test flag to agents
* Quality fix
* Add example for HfEngine
* Improve conversation example for HfEngine
* typo fix
* Verify doc
* Update docs/source/en/agents.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/agents/agents.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/agents/prompts.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/agents/python_interpreter.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update docs/source/en/agents.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Fix style issues
* local s2t tool
---------
Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Adding SDPA support for BERT
* Using the proper input name for testing model input in inference()
* Adding documentation for SDPA in BERT model page
* Use the stable link for the documentation
* Adding a gate to only call .contiguous() for torch < 2.2.0
* Additions and fixes to the documentation
* Minor updates to documentation
* Adding extra requirements needed for the contiguous() bug
* Adding "Adapted from" in plcae of the "Copied from"
* Add benchmark speedup tables to the documentation
* Minor fixes to the documentation
* Use ClapText as a replacemenet for Bert in the Copied-From
* Some more fixes for the fix-copies references
* Overriding the test_eager_matches_sdpa_generate in bert tests to not load with low_cpu_mem_usage
[test all]
* Undo changes to separate test
* Refactored SDPA self attention code for KV projections
* Change use_sdpa to attn_implementation
* Fix test_sdpa_can_dispatch_on_flash by preparing input (required for MultipleChoice models)
* Draft tutorial for talking to chat models
* Reformat lists and text snippets
* Cleanups and clarifications
* Finish up remaining TODOs
* Correct section link
* Small fix
* Add proper quantization examples
* Add proper quantization examples
* Add proper quantization examples
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/_toctree.yml
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/conversations.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Fix Text Generation Pipeline link and add a ref to the LLM inference guide
* intelligent -> capable
* Small intro cleanup
* Small text cleanup
* Small text cleanup
* Clarification about system message
* Clarification about system message
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* chore(root): Initial commit of Phi-3 files.
* fix(root): Fixes Phi-3 missing on readme.
* fix(root): Ensures files are consistent.
* fix(phi3): Fixes unit tests.
* fix(tests): Fixes style of phi-3 test file.
* chore(tests): Adds integration tests for Phi-3.
* fix(phi3): Removes additional flash-attention usage, .e.g, swiglu and rmsnorm.
* fix(phi3): Fixes incorrect docstrings.
* fix(phi3): Fixes docstring typos.
* fix(phi3): Adds support for Su and Yarn embeddings.
* fix(phi3): Improves according first batch of reviews.
* fix(phi3): Uses up_states instead of y in Phi3MLP.
* fix(phi3): Uses gemma rotary embedding to support torch.compile.
* fix(phi3): Improves how rotary embedding classes are defined.
* fix(phi3): Fixes inv_freq not being re-computed for extended RoPE.
* fix(phi3): Adds last suggestions to modeling file.
* fix(phi3): Splits inv_freq calculation in two lines.
* [FEAT]: EETQ quantizer support
* Update quantization.md
* Update docs/source/en/main_classes/quantization.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update docs/source/en/quantization.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update docs/source/en/quantization.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/integrations/__init__.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/integrations/__init__.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/integrations/eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/integrations/eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/integrations/eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update tests/quantization/eetq_integration/test_eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/quantizers/auto.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/quantizers/auto.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/quantizers/auto.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/quantizers/quantizer_eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update tests/quantization/eetq_integration/test_eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/quantizers/quantizer_eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update tests/quantization/eetq_integration/test_eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update tests/quantization/eetq_integration/test_eetq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* [FEAT]: EETQ quantizer support
* [FEAT]: EETQ quantizer support
* remove whitespaces
* update quantization.md
* style
* Update docs/source/en/quantization.md
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* add copyright
* Update quantization.md
* Update docs/source/en/quantization.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/quantization.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Address the comments by amyeroberts
* style
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Duplicate swiftformer
* Convert SwiftFormerPatchEmbedding
* Convert SwiftFormerEmbeddings
* Convert TFSwiftFormerMlp
* Convert TFSwiftFormerConvEncoder
* Convert TFSwiftFormerLocalRepresentation
* convert TFSwiftFormerEncoderBlock
* Convert SwiftFormerStage
* Convert SwiftFormerEncoder
* Add TFSWiftFormerPreTrainedModel
* Convert SwiftFormerForImageClassification
* Add kwargs and start drop path
* Fix syntax
* Change Model class name
* Add TFSwiftFormer to __init__
* Duplicate test_modeling_swiftformer
* First test conversions
* Change require_torch to require_tf
* Add exports to swiftformer __init__
* Add TFSwiftFormerModel wrapper
* Fix __init__ and run black
* Remove docstring from MainLayer, fix padding
* Use keras.layers.Activation on keras.Sequential
* Fix swiftformer exports
* Fix activation layer from config
* Remove post_inits
* Use tf.keras.layers.ZeroPadding2D
* Convert torch normalize
* Change tf test input shape
* Fix softmax and reduce_sum
* Convert expand_dims and repeat
* Add missing reshape and tranpose
* Simplify TFSwiftFormerEncoderBlock.call
* Fix mismatch in patch embeddings
* Fix expected output shape to match channels last
* Fix swiftformer typo
* Disable test_onnx
* Fix TFSwiftFormerForImageClassification call
* Add unpack inputs
* Convert flatten(2).mean(-1)
* Change vision dummy inputs (to be reviewed)
* Change test_forward_signature to use .call
* Fix @unpack_inputs
* Set return_tensors="tf" and rename class
* Rename wrongly named patch_embeddings layer
* Add serving_output and change dummy_input shape
* Make dimensions BCHW and transpose inside embedding layer
* Change SwiftFormerEncoderBlock
* Fix ruff problems
* Add image size to swiftformer config
* Change tranpose to MainLayer and use -1 for reshape
* Remove serving_outputs and dummy_inputs
* Remove test_initialization test from tf model
* Make Sequential component a separate layer
* Fix layers' names
* Tranpose encoder outputs
* Fix tests and check if hidden states is not None
* Fix TFSwiftFormerForImageClassification
* Run make fixup
* Run make fix-copies
* Update modeling_tf_auto
* Update docs
* Fix modeling auto mapping
* Update modelint_tf_swiftformer docs
* Fill image_size doc and type
* Add reduction=None to loss computation
* Update docs
* make style
* Debug: Delete the tip to see if that changes anything
* Re-add tip
* Remove add_code_sample_docstrings
* Remove unused import
* Get the debug to actually tell us the problem it has with the docs
* Try a substitution to match the PyTorch file?
* Add swiftformer to ignore list
* Add build() methods
* Update copyright year
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove FIXME comment
* Remove from_pt
* Update copyright year
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Rename one-letter variables
* Remove FIXMEs related to momentum
* Remove old TODO comment
* Remove outstanding FIXME comments
* Get dropout rate from config
* Add specific dropout config for MLP
* Add convencoder dropout to config
* Pass config to SwiftFormerDropPath layer
* Fix drop_path variable name and add Adapted from comment
* Run ruff
* Removed copied from comment
* Run fix copies
* Change drop_path to identity to match pt
* Cleanup build() methods and move to new keras imports
* Update docs/source/en/model_doc/swiftformer.md
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Raise error if drop_path_rate > 0.0
* Apply suggestions from code review
Replace (self.dim), with self.dim,
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Remove drop_path function
* Add training to TFSwiftFormerEncoder
* Set self.built = True last
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Should have been added to previous commit
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Change default_feature_extractor to default_image_processor
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Import Keras from modeling_tf_utils
* Remove relative import
* Run ruff --fix
* Move import keras to tf_available
* Add copied from comment to test_forward_signature
* Reduce batch size and num_labels
* Extract loss logic to hf_compute_loss
* Run ruff format
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* initial commit, remove warnings on default chat templates
* stash commit
* Raise a much sterner warning for default chat templates, and prepare for depreciation
* Update the docs
* wip
* fix __init__.py
* add docs
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* address comments 1
* work on make fixup
* pass configs down
* add sdpa attention
* remove DbrxBlock
* add to configuration_auto
* docstring now passes formatting test
* fix style
* update READMEs
* add dbrx to modeling_auto
* make fix-copies generated this
* add DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP
* config docstring passes formatting test
* rename moe_loss_weight to router_aux_loss_coef
* add to flash-attn documentation
* fix model-path in tests
* Explicitly make `"suli"` the default `ffn_act_fn`
Co-authored-by: Wing Lian <wing.lian@gmail.com>
* default to using router_aux_loss_coef over ffn_config[moe_loss_weight]
* fix _flash_attn_uses_top_left_mask and is_causal
* fix tests path
* don't use token type IDs
* follow Llama and remove token_type_ids from test
* init ConfigTester differently so tests pass
* remove multiple choice test
* remove question + answer test
* remove sequence classification test
* remove token classification test
* copy Llama tests and remove token_type_ids from test inputs
* do not test pruning or headmasking; style code
* add _tied_weights_keys parameter to pass test
* add type hints
* fix type check
* update config tester
* remove masked_lm test
* remove encoder tests
* initialize DbrxModelTester with correct params
* style
* torch_dtype does not rely on torch
* run make fixup, fix-copies
* use https://huggingface.co/v2ray/dbrx-base-fixed/blob/main/modeling_dbrx.py
* add copyright info
* fix imports and DbrxRotaryEmbedding
* update DbrxModel docstring
* use copies
* change model path in docstring
* use config in DbrxFFN
* fix flashattention2, sdpaattention
* input config to DbrXAttention, DbrxNormAttentionNorm
* more fixes
* fix
* fix again!
* add informative comment
* fix ruff?
* remove print statement + style
* change doc-test
* fix doc-test
* fix docstring
* delete commented out text
* make defaults match dbrx-instruct
* replace `router_aux_loss_coef` with `moe_loss_weight`
* is_decoder=True
* remove is_decoder from configtester
* implement sdpa properly
* make is_decoder pass tests
* start on the GenerationTesterMixin tests
* add dbrx to sdpa documentation
* skip weight typing test
* style
* initialize smaller model
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Add DBRX to toctree
* skip test_new_cache_format
* make config defaults smaller again
* add pad_token_id
* remove pad_token_id from config
* Remove all references to DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP
* Update src/transformers/models/dbrx/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/dbrx/modeling_dbrx.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update docs/source/en/model_doc/dbrx.md
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Update src/transformers/models/dbrx/configuration_dbrx.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update docs/source/en/model_doc/dbrx.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix typo
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update docs, fix configuration_auto.py
* address pr comments
* remove is_decoder flag
* slice
* fix requires grad
* remove grad
* disconnect differently
* remove grad
* enable grads
* patch
* detach expert
* nissan al ghaib
* Update modeling_dbrx.py
* Update src/transformers/models/dbrx/modeling_dbrx.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* replace "Gemma" with "Dbrx"
* remove # type: ignore
* don't hardcode vocab_size
* remove ToDo
* Re-add removed idefics2 line
* Update test to use tiny-random!
* Remove TODO
* Remove one more case of loading the entire dbrx-instruct in the tests
* Update src/transformers/models/dbrx/modeling_dbrx.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* address some comments
* small model
* add dbrx to tokenization_auto
* More docstrings with add_start_docstrings
* Dbrx for now
* add PipelineTesterMixin
* Update src/transformers/models/dbrx/configuration_dbrx.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove flash-attn2 import error
* fix docstring
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add useage example
* put on one line
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix ffn_act_fn
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* change "dbrx" to "DBRX" for display purposes.
* fix __init__.py?
* fix __init__.py
* fix README
* return the aux_loss
* remove extra spaces
* fix configuration_auto.py
* fix format in tokenization_auto
* remove new line
* add more useage examples
---------
Co-authored-by: Abhi Venigalla <abhi.venigalla@databricks.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Eitan Turok <eitan.turok@databricks.com>
Co-authored-by: Eitan Turok <150733043+eitanturok@users.noreply.github.com>
Co-authored-by: Wing Lian <wing.lian@gmail.com>
Co-authored-by: Eitan Turok <eitanturok@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Mihir Patel <mihir.v.patel7@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add jamba arch
* apply "make fix-copies" changes
* fix link to model in JambaConfig docstring
* Add n_ctx in modeling file because repo-consistency wants that
* Add jamba to flash attention and sdpa documentation
* mamba dt_proj quant fix now works for LoRA as well
* override test_left_padding_compatibility and use a more permissive tolerance. left padding numerical difference are accentuated by mamba layers
* add jamba to tokenization auto
* fix comments of shape (PR #24 in the model page: https://huggingface.co/ai21labs/Jamba-v0.1/discussions/24)
* simple PR fixes
* remove unnecessary kwargs from JambaAttentionDecoderLayer and JambaMambaDecoderLayer
* remove the LoRA hack for the mamba dt_proj bias. It was solved in huggingface/peft#1530 (https://github.com/huggingface/peft/pull/1530)
* Add copied comment on JambaMLP (it's the same as MixtralMLP)
* remove padding_mask warnings. It's not supported anymore
* fix docstring. Float instead of int
* A few more minor PR fixes
* (1) lowercase names for mamba layernorms (2) remove _apply_inner_layernorms and do it directly in the forward pass
* Return None attention weights from mamba layers. Append to all attentions only if not None.
* remove some leftover jamba archive lists
* Better separation between expert vs non-expert layers. non-expert layers return None as router_logits, and it is not concatenated to all_router_logits returned from JambaModel
* no need to take router_logits at config.expert_layer_offset anymore. result.router_logits now holds results only for expert layers
* Add Jamba paper on READMEs
* (1) rename n_ctx -> max_position_embeddings (2) don't use it in the modeling file since it's not needed (set it as an exception to check_config_attributes)
* Add copied from comment
* remove the code path for apply_inner_layernorms=False. Jamba always has the inner mamba layernorms
* clearer docstring for _convert_to_standard_cache
* style fixes
* Change calc_logits_for_entire_prompt (bool) to num_logits_to_keep (int). Adapt assisted decoding code tp use it. Also small change in low memory beam search decoding path to support this new int value in model_inputs
* rename test so it still overrides what its meant to override
* draft
* oups
* nit
* remove more complexe logic
* fix names used in config
* fix fix fix
* style
* fix some more failing tests
* generate did not init the cache 🙃
* more small nits
* typo
* config.mamba_expand * config.hidden_size for the intermediate size of the mamba shapes
* fix init of pkv with torch.tensor()
* empty tensor
* fix some init issues
* stupid changes required by generate because it does not even support it's own DynamicCache class
* more fixes
* fix general assisted gen cache_position bug
* tests passing
* Add offsets and periods as SPECIAL_CASES_TO_ALLOW in check_config_attributes.py
* fix reorder_cache to reorder mamba states and override some more functions in HybridMambaAttentionDynamicCache
* no need to override test_past_key_values_format() and _check_past_key_values_for_generate() in tests anymore
* fix docstrings and typehints for past_key_values
* style fixes
* fix docs
* change typehint due to copy from Mixtral
* forgot import
* import order
* Add configuration_jamba and modeling_jamba to not_doctested because the model is too big to download (in docstring of JambaForCausalLM.forward)
* Add integration test with tiny tandom Jamba model on hub
* fix flash attention cache shapes
* bring back forgotten hidden states
* rename HybridMambaAttentionDynamicCache.seqlen_offset to has_previous_state (and make bool) and bugfix - it should be set to True after a finished forward pass of the entire model
* align integration test after modeling fixes
* bugfix - mamba can use precomputed states only of forward pass is on a single token
* bugfix - mamba can use precomputed states only if they match the batch size
* typo
* remove making _prepare_4d_causal_attention_mask a leaf function
* stop using past_seq_len.get_seq_length(). Use cache positions instead. Adjust test (test_decoder_model_past_with_large_inputs) accordingly
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
* Add OLMo using add-new-model-like with Llama
* Fix incorrect tokenizer for OLMo
* Copy-paste relevant OLMo methods and their imports
* Add OLMo config
* Modify OLMo config to follow HF conventions
* Remove unneeded Llama code from OLMo model
* Add ability for OLMo model to output attentions
* Add OLMoPreTrainedModel and OLMoModel
* Add OLMoForCausalLM
* Minor fixes to OLMo model for style and missing functions
* Implement OLMo tokenizer
* Implement OLMo to HF conversion script
* Add tests for OLMo model
* Add tests for OLMo fast tokenizer
* Add auto-generated dummy objects
* Remove unimplemented OLMo classes from auto and init classes and re-format
* Add README and associated auto-generated files
* Use OLMo names for common properties
* Run make fixup
* Remove `|` from OLMo typing
* Remove unneeded tokenization_olmo.py
* Revert model, config and converter to add-new-model-like Llama
* Move logic for adding bos/eos token into GPTNeoxTokenizerFast
* Change OLMoConfig defaults to match OLMo-7B
* Use GPTNeoXToknizerFast in OLMo tokenizer tests
* Modify auto-generated OLMoModelTests to work for OLMo
* Add non-parametric layer norm OLMoLayerNorm
* Update weight conversion script for OLMo
* Fix __init__ and auto structure for OLMo
* Fix errors from make fixup
* Remove OLMoTokenizerFast from documentation
* Add missing 'Copied from' for OLMoModel._update_causal_mask
* Run make fix-copies
* Rearrange string replacements in OLMoForCausalLM Copied from
* Move OLMo and Llama CausalLM.forward example into global constants
* Fix OLMO_GENERATION_EXAMPLE doc string typo
* Add option for qkv clipping to OLMo
* Rearrange OLMoConfig kwargs in convert_olmo_weights_to_hf
* Add clip_qkv to OLMoConfig in convert_olmo_weights_to_hf
* Fix OLMo tokenization bug using conversion script
* Keep model in full precision after conversion
* Do not add eos token automatically
* Update references to OLMo model in HF Hub
* Do not add eos token during encoding by default
* Fix Llama generation example
* Run make fixup
* OLMo 7B integration test fix
* Remove unneeded special case for OLMoConfig
* OLMo 7B Twin 2T integration test fix
* Fix test_model_7b_greedy_generation
* Remove test_compile_static_cache
* Fix OLMo and Llama generation example
* Run make fixup
* Revert "OLMo 7B integration test fix"
This reverts commit 4df56a4b15.
* Revert "OLMo 7B Twin 2T integration test fix"
This reverts commit 9ff65a4a29.
* Ungate 7B integration tests and fix greedy generation test
* Add retries for flaky test_eager_matches_sdpa_generate
* Fix output of doc example for OLMoForCausalLM.forward
* Downsize OLMo doc test for OLMoForCausalLM.forward to 1B model
* Try fix incorrect characters in OLMoForCausalLM.forward doct test
* Try fix incorrect characters in OLMoForCausalLM.forward doc test using end quotes
* Remove pretraining_tp from OLMo config and model
* Add missing 'Copied from' instances
* Remove unneeded causal_mask from OLMoModel
* Revert Llama changes
* Ignore copy for OLMoForCausalLM.forward
* Change 'OLMo' to 'Olmo' in classes
* Move minimal OLMo tokenization tests to model tests
* Add missed 'Copied from' for repeat_kv
* Add create token type ids to CodeGenTokenizer
* Fix inconsistent length of token type ids
* Format source codes
* Fix inconsistent order of methods
* Update docstring
* add test_tokenizer_integration test
* Format source codes
* Add `copied from` comment to CodeGenTokenizerFast
* Add doc of create_token_type_ids_from_sequences
* Make return_token_type_ids False by default
* Make test_tokenizer_integration as slow test
* Add return_token_type_ids to tokenizer init arg
* Add test for tokenizer's init return_token_type_ids
* Format source codes
* Configuring Translation Pipelines documents update #27753
Configuring Translation Pipelines documents update
* Language Format Addition
* adding supported list of languages list
* Fork.
* RecurrentGemma initial commit.
* Updating __init__.py.
* Minor modification to how we initialize the cache.
Changing how the config specifies the architecture.
* Reformat code to 4 spaces.
Fixed a few typos.
* Fixed the forward pass.
Still unclear on the cache?
* Fixed the RecurrentGemmaForCausalLM
* Minor comment that we might not need attention_mask and output_attention arguments.
* Now cache should work as well.
* Adding a temporary example to check whether the model generation works.
* Adding the tests and updating imports.
* Adding the example file missing in the previous commit.
* First working example.
* Removing .gitignore and reverting parts of __init__.
* Re-add .gitignore.
* Addressing comments for configuration.
* Move mask creation to `_prepare_inputs_for_generation`.
* First try at integration tests:
1. AttributeError: 'GriffinCausalLMOutput' object has no attribute 'attentions'.
2. `cache_position` not passed
* Transfoering between machines.
* Running normal tests.
* Minor fix.
* More fixes.
* Addressing more comments.
* Minor fixes.
* first stab at cleanup
* more refactoring
* fix copies and else
* renaming and get init to work
* fix causal mask creation
* update
* nit
* fix a hell lot of things
* updates
* update conversion script
* make all keys importable
* nits
* add auto mappings
* properly convert ffw_up and down
* add scaling
* fix generations
* for recurrent dtype
* update
* fix going beyong window
* fixup
* add missing files
* current updates to remove last einops
* finish modeling refactor
* TADA
* fix compile
* fix most failing testt ? ?
* update tests
* refactor and update
* update
* nits, fixup and update tests
* more fixup
* nits
* fix imports
* test format
* fixups
* nits
* tuple typing
* fix code quality
* add model card
* fix doc
* skip most generation tests
* nits
* style
* doc fixes
* fix pr and check_copies?
* last nit
* oupsy
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <hi@lysand.re>
* update
* Update src/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* update based on review
* doc nit
* fix quality
* quality
* fix slow test model path
* update default dype
* ignore attributes that can be safely ignored in check config attributes
* 0lallalala come on
* save nit
* style
* remove to dict update
* make sure we can also run in float16
* style
---------
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Aleksandar Botev <botev@google.com>
Co-authored-by: Leonard Berrada <lberrada@users.noreply.github.com>
Co-authored-by: anushanf <anushanf@google.com>
Co-authored-by: botev <botevmg@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* ImportError: Trainer with PyTorch requires accelerate>=0.20.1 Fix
Adding the evaluate and accelerate installs at the beginning of the cell to fix the issue
* ImportError Fix: Trainer with PyTorch requires accelerate>=0.20.1
* Import Error Fix
* Update installation.md
* Update quicktour.md
* rollback other lang changes
* Update _config.py
* updates for other languages
* fixing error
* Tutorial Update
* Update tokenization_utils_base.py
* Just use an optimizer string to pass the doctest?
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
* add FA2 to o.g Musicgen
* make style
* add FA2 support to Musicgen Melody
* add generation FA2 tests to o.g Musicgen
* make style and fix copies
* add Musicgen to FA2 docs + deprecate list
* add sdpa supports to Musicgen's
* make style and fix copies
* refactor attention implementation arguments
* add Copied from to sdpa tests
* add copied form in sdpa tests melody
* add copied for FA2 generation tests
* add FA2 inference copied from
* make style
* add support for qwen2 MoE models
* update docs
* add support for qwen2 MoE models
* update docs
* update model name & test
* update readme
* update class names & readme & model_doc of Qwen2MoE.
* update architecture name
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fix style
* fix test when there are sparse and non sparse layers
* fixup
* Update README.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixup
* fixup
* add archive back
* add support for qwen2 MoE models
* update docs
* update model name & test
* update readme
* update class names & readme & model_doc of Qwen2MoE.
* update architecture name
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fixup
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* fix style
* fix test when there are sparse and non sparse layers
* fixup
* add archive back
* fix integration test
* fixup
---------
Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* model_summary.md - Add link to Harvard's Annotated Transformer.
* model_summary.md - slight wording change + capitalize name of the paper
* model_summary.md - moves the Annotated Transformer link in a praenthesis next to the link to the original paper (great idea, stevhliu!)
* model_summary.md - moves the Annotated Transformer link in a praenthesis next to the link to the original paper (commit pt. 2, accidentally removed "has" in pt. 1)
* Added SuperPoint docs
* Added tests
* Removed commented part
* Commit to create and fix add_superpoint branch with a new branch
* Fixed dummy_pt_objects
* Committed missing files
* Fixed README.md
* Apply suggestions from code review
Fixed small changes
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved ImagePointDescriptionOutput from modeling_outputs.py to modeling_superpoint.py
* Removed AutoModelForKeypointDetection and related stuff
* Fixed inconsistencies in image_processing_superpoint.py
* Moved infer_on_model logic simply in test_inference
* Fixed bugs, added labels to forward method with checks whether it is properly a None value, also added tests about this logic in test_modeling_superpoint.py
* Added tests to SuperPointImageProcessor to ensure that images are properly converted to grayscale
* Removed remaining mentions of MODEL_FOR_KEYPOINT_DETECTION_MAPPING
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fixed from (w, h) to (h, w) as input for tests
* Removed unnecessary condition
* Moved last_hidden_state to be the first returned
* Moved last_hidden_state to be the first returned (bis)
* Moved last_hidden_state to be the first returned (ter)
* Switched image_width and image_height in tests to match recent changes
* Added config as first SuperPointConvBlock init argument
* Reordered README's after merge
* Added missing first config argument to SuperPointConvBlock instantiations
* Removed formatting error
* Added SuperPoint to README's de, pt-br, ru, te and vi
* Checked out README_fr.md
* Fixed README_fr.md
* Test fix README_fr.md
* Test fix README_fr.md
* Last make fix-copies !
* Updated checkpoint path
* Removed unused SuperPoint doc
* Added missing image
* Update src/transformers/models/superpoint/modeling_superpoint.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Removed unnecessary import
* Update src/transformers/models/superpoint/modeling_superpoint.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Added SuperPoint to _toctree.yml
---------
Co-authored-by: steven <steven.bucaillle@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
* add galore v1
* add import
* add tests and doc
* fix doctest
* forward contrib credits from discussions
* forward contrib credits from discussions
* Apply suggestions from code review
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* fix failing tests'
* switch to `optim_target_modules` and clarify docs
* more clarification
* enhance lookup logic
* update a test to add peak memory
* add regex, all-linear and single string support
* add layer-wise optimization through DummyOptimizers and LRSchedulers
* forward contrib credits from discussions and original idea
* add a section about DDP not supported in layerwise
* Update src/transformers/trainer.py
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
* fix self
* check only if layer_wise
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* oops
* make use of intervals
* clarify comment
* add matching tests
* GaLoRe -> GaLore
* move to `get_scheduler`
* add note on docs
* add a warning
* adapt a bit the docs
* update docstring
* support original API
* Update docs/source/en/trainer.md
* slightly refactor
* Update docs/source/en/trainer.md
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Update src/transformers/training_args.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix args parsing and add tests
* remove warning for regex
* fix type hint
* add note about extra args
* make `is_regex` return optional
---------
Co-authored-by: Maxime <maximegmd @users.noreply.github.com>
Co-authored-by: Wing Lian <winglian @users.noreply.github.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: hiyouga <hiyouga@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* Update pipeline_tutorial.md to include gradio
* Update pipeline_tutorial.md
* Update docs/source/en/pipeline_tutorial.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/pipeline_tutorial.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/pipeline_tutorial.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/pipeline_tutorial.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update pipeline_tutorial.md
* Update docs/source/en/pipeline_tutorial.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Cohere Model Release (#1)
Cohere Model Release
* Remove unnecessary files and code (#2)
Some cleanup
* Delete cohere-model directory (#3)
* Make Fix (#5)
* Pr fixes (#6)
* fixes for pr
* pr fixes for the format
* pr fixes for the format
* src/transformers/models/auto/tokenization_auto.py
* Tokenizer test (#8)
* tokenizer test
* format fix
* Adding Docs and other minor changes (#7)
* Add modeling tests (#9)
* Smol Fix (#11)
* tokenization tests are fixed
* format fixes
* fix pr doc tests
* fix pr doc tests
* fix pr doc tests
* fix pr style check
* small changes in cohere.md
* FIX: Address final comments for transformers integration (#13)
* fix modeling final nits and add proper test file
* for now leave empty tests
* add integration test
* push new test
* fix modeling cohere (#14)
* Update chat templates to use the new API (#15)
---------
Co-authored-by: ahmetustun <ahmetustun89@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Added pytests for pvt-v2, all passed
* Added pvt_v2 to docs/source/end/model_doc
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat. Added additional type support for image size in config
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Reverted batch eval changes for PR
* Updated index.md
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat
* Ran fix-copies
* Fixed PvtV2Backbone tests
* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
* Fixed backbone stuff and fixed tests: all passing
* Ran make fixup
* Made modifications for code checks
* Remove ONNX config from configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use explicit image size dict in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Make image_size optional in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove _ntuple use in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove reference to fp16_enabled
* Model modules now take config as first argument even when not used
* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
* All LayerNorm now instantiates with config.layer_norm_eps
* Added docstring for depth-wise conv layer
* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
* Refactored PVTv2 in prep for gradient checkpointing
* Gradient checkpointing ready to test
* Removed override of _set_gradient_checkpointing
* Cleaned out old code
* Applied code fixup
* Applied code fixup
* Began debug of pvt_v2 tests
* Leave handling of num_labels to base pretrained config class
* Deactivated gradient checkpointing tests until it is fixed
* Removed PvtV2ImageProcessor which duped PvtImageProcessor
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Added pvt_v2 to docs/source/end/model_doc
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat. Added additional type support for image size in config
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat
* Ran fix-copies
* Fixed PvtV2Backbone tests
* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
* Fixed backbone stuff and fixed tests: all passing
* Ran make fixup
* Made modifications for code checks
* Remove ONNX config from configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use explicit image size dict in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Make image_size optional in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove _ntuple use in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove reference to fp16_enabled
* Model modules now take config as first argument even when not used
* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
* All LayerNorm now instantiates with config.layer_norm_eps
* Added docstring for depth-wise conv layer
* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
* Refactored PVTv2 in prep for gradient checkpointing
* Gradient checkpointing ready to test
* Removed override of _set_gradient_checkpointing
* Cleaned out old code
* Applied code fixup
* Applied code fixup
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Ran fix-copies and fixup. All checks passed
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Fixed config docstring. Added channels property
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Ran fix-copies and fixup. All checks passed
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Fixed config backbone compat
* Ran fix-copies
* Began debug of pvt_v2 tests
* Leave handling of num_labels to base pretrained config class
* Deactivated gradient checkpointing tests until it is fixed
* Removed PvtV2ImageProcessor which duped PvtImageProcessor
* Fixed issue from rebase
* Fixed issue from rebase
* Set tests for gradient checkpointing to skip those using reentrant since it isn't supported
* Fixed issue from rebase
* Fixed issue from rebase
* Changed model name in docs
* Removed duplicate PvtV2Backbone
* Work around type switching issue in tests
* Fix model name in config comments
* Update docs/source/en/model_doc/pvt_v2.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Changed name of variable from 'attn_reduce' to 'sr_type'
* Changed name of variable from 'attn_reduce' to 'sr_type'
* Changed from using 'sr_type' to 'linear_attention' for clarity
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Removed old code
* Changed from using 'sr_type' to 'linear_attention' for clarity
* Fixed Class names to be more descriptive
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Removed outdated code
* Moved paper abstract to single line in pvt_v2.md
* Added usage tips to pvt_v2.md
* Simplified module inits by passing layer_idx
* Fixed typing for hidden_act in PvtV2Config
* Removed unusued import
* Add pvt_v2 to docs/source/en/_toctree.yml
* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Move function parameters to single line
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Update year of copyright to 2024
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Make code more explicit
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Updated sr_ratio to be more explicit spatial_reduction_ratio
* Removed excess type hints in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Move params to single line in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Removed needless comment in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update copyright date in pvt_v2.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved params to single line in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Updated copyright date in configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Cleaned comments in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Renamed spatial_reduction Conv2D operation
* Revert "Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
"
This reverts commit c4a04416dd.
* Updated conversion script to reflect module name change
* Deprecated reshape_last_stage option in config
* Removed unused imports
* Code formatting
* Fixed outdated decorators on test_inference_fp16
* Added "Copied from" comments in test_modeling_pvt_v2.py
* Fixed import listing
* Updated model name
* Force empty commit for PR refresh
* Fixed linting issue
* Removed # Copied from comments
* Added PVTv2 to README_fr.md
* Ran make fix-copies
* Replace all FoamoftheSea hub references with OpenGVLab
* Fixed out_indices and out_features logic in configuration_pvt_v2.py
* Made ImageNet weight conversion verification optional in convert_pvt_v2_to_pytorch.py
* Ran code fixup
* Fixed order of parent classes in PvtV2Config to fix the to_dict method override
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* torchscript and trainer md es translation
* corrected md es files and even corrected spelling in en md
* made es corrections to trainer.md
* deleted entrenamiento... title on yml
* placed entrenamiento in right place
* translated es chat_templating.md w/ yml addition
* requested es changes to md and yml
* last es changes to md
* initial implementation of flash attention for gptj
* modify flash attention and overwrite test_flash_attn_2_generate_padding_right
* update flash attention support list
* remove the copy line in the `CodeGenBlock`
* address copy mechanism
* Update src/transformers/models/gptj/modeling_gptj.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add GPTJ attention classes
* add expected outputs in the gptj test
* Ensure repo consistency with 'make fix-copies'
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* initial-commit
* start cleaning
* small nits
* small nits
* current updates
* add kernels
* small refactoring little step
* add comments
* styling
* nit
* nits
* Style
* Small changes
* Push dummy mambda simple slow
* nit
* Use original names
* Use original names and remove norm
* Updates for inference params
* Style nd updates
* nits
* Match logits
* Add a test
* Add expected generated text
* nits doc, imports and styling
* style
* oups
* dont install kernels, invite users to install the required kernels
* let use use the original packages
* styling
* nits
* fix some copieds
* update doc
* fix-copies
* styling done
* nits
* fix import check
* run but wrong cuda ress
* mamba CUDA works :)
* fix the fast path
* config naming nits
* conversion script is not required at this stage
* finish fixing the fast path: generation make sense now!
* nit
* Let's start working on the CIs
* style
* better style
* more nits
* test nit
* quick fix for now
* nits
* nit
* nit
* nit
* nits
* update test rest
* fixup
* update test
* nit
* some fixes
* nits
* update test values
* fix styling
* nit
* support peft
* integrations tests require torchg
* also add slow markers
* styling
* chose forward wisely
* nits
* update tests
* fix gradient checkpointing
* fixup
* nit
* fix doc
* check copies
* fix the docstring
* fix some more tests
* style
* fix beam search
* add init schene
* update
* nit
* fix
* fixup the doc
* fix the doc
* fixup
* tentative update but slow is no longer good
* nit
* should we always use float32?
* nits
* revert wrong changes
* res in float32
* cleanup
* skip fmt for now
* update generation values
* update test values running original model
* fixup
* update tests + rename inference_params to cache_params + make sure training does not use cache_params
* small nits
* more nits
* fix final CIs
* style
* nit doc
* I hope final doc nits
* nit
* 🫠
* final touch!
* fix torch import
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Apply suggestions from code review
* fix fix and fix
* fix base model prefix!
* nit
* Update src/transformers/models/mamba/__init__.py
* Update docs/source/en/model_doc/mamba.md
Co-authored-by: Lysandre Debut <hi@lysand.re>
* nit
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* torchscript and trainer md es translation
* corrected md es files and even corrected spelling in en md
* made es corrections to trainer.md
* deleted entrenamiento... title on yml
* placed entrenamiento in right place
* First draft
* More improvements
* More improvements
* More fixes
* Fix copies
* More improvements
* More fixes
* More improvements
* Convert checkpoint
* More improvements, set up tests
* Fix more tests
* Add UdopModel
* More improvements
* Fix equivalence test
* More fixes
* Redesign model
* Extend conversion script
* Use real inputs for conversion script
* Add image processor
* Improve conversion script
* Add UdopTokenizer
* Add fast tokenizer
* Add converter
* Update README's
* Add processor
* Add fully fledged tokenizer
* Add fast tokenizer
* Use processor in conversion script
* Add tokenizer tests
* Fix one more test
* Fix more tests
* Fix tokenizer tests
* Enable fast tokenizer tests
* Fix more tests
* Fix additional_special_tokens of fast tokenizer
* Fix tokenizer tests
* Fix more tests
* Fix equivalence test
* Rename image to pixel_values
* Rename seg_data to bbox
* More renamings
* Remove vis_special_token
* More improvements
* Add docs
* Fix copied from
* Update slow tokenizer
* Update fast tokenizer design
* Make text input optional
* Add first draft of processor tests
* Fix more processor tests
* Fix decoder_start_token_id
* Fix test_initialization
* Add integration test
* More improvements
* Improve processor, add test
* Add more copied from
* Add more copied from
* Add more copied from
* Add more copied from
* Remove print statement
* Update README and auto mapping
* Delete files
* Delete another file
* Remove code
* Fix test
* Fix docs
* Remove asserts
* Add doc tests
* Include UDOP in exotic model tests
* Add expected tesseract decodings
* Add sentencepiece
* Use same design as T5
* Add UdopEncoderModel
* Add UdopEncoderModel to tests
* More fixes
* Fix fast tokenizer
* Fix one more test
* Remove parallelisable attribute
* Fix copies
* Remove legacy file
* Copy from T5Tokenizer
* Fix rebase
* More fixes, copy from T5
* More fixes
* Fix init
* Use ArthurZ/udop for tests
* Make all model tests pass
* Remove UdopForConditionalGeneration from auto mapping
* Fix more tests
* fixups
* more fixups
* fix the tokenizers
* remove un-necessary changes
* nits
* nits
* replace truncate_sequences_boxes with truncate_sequences for fix-copies
* nit current path
* add a test for input ids
* ids that we should get taken from c9f7a32f57
* nits converting
* nits
* apply ruff
* nits
* nits
* style
* fix slow order of addition
* fix udop fast range as well
* fixup
* nits
* Add docstrings
* Fix gradient checkpointing
* Update code examples
* Skip tests
* Update integration test
* Address comment
* Make fixup
* Remove extra ids from tokenizer
* Skip test
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update year
* Address comment
* Address more comments
* Address comments
* Add copied from
* Update CI
* Rename script
* Update model id
* Add AddedToken, skip tests
* Update CI
* Fix doc tests
* Do not use Tesseract for the doc tests
* Remove kwargs
* Add original inputs
* Update casting
* Fix doc test
* Update question
* Update question
* Use LayoutLMv3ImageProcessor
* Update organization
* Improve docs
* Update forward signature
* Make images optional
* Remove deprecated device argument
* Add comment, add add_prefix_space
* More improvements
* Remove kwargs
---------
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add tasks_explained.md to es/
* Fix little typo in en/ version
* translate speach/audio section
* translate part of vision computer section | fix little typo in en/
* Fix little typo in en/
* Translate vision computer section | remove ** ** to * * in both files
* Translate NLP section | fix link to task/translation in en/
* Updete link in es/tasks_summary.md
* Fix task_summary title link
The link in evaluation was missing a hyphen between post and processing. I fixed this, for English only. Someone with the ability to do a global search/replace should fix the other languages (if indeed they have this issue)/
* Add task_summary to es/_toctree.yml
* Add task_summary.md to docs/es
* Change title of task_summary.md
* Translate firsts paragraphs
* Translate middle paragraphs
* Translte the rest of the doc
* Edit firts paragraph
* Add chat support to text generation pipeline
* Better handling of single elements
* Deprecate ConversationalPipeline
* stash commit
* Add missing add_special_tokens kwarg
* Update chat templating docs to refer to TextGenerationPipeline instead of ConversationalPipeline
* Add ✨TF✨ tests
* @require_tf
* Add type hint
* Add specific deprecation version
* Remove unnecessary do_sample
* Remove todo - the discrepancy has been resolved
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/pipelines/text_generation.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add missing entries to the language selector
* Add links to the Colab and AWS Studio notebooks for ONNX
* Use anchor links in CONTRIBUTING.md
* Fix broken hyperlinks due to spaces
* Fix links to OpenAI research articles
* Remove confusing footnote symbols from author names, as they are also considered invalid markup
* This is a test commit
* testing commit
* final commit with some changes
* Removed copy statement
* Fixed formatting issues
* Fixed error added past_key_values in the forward method
* Fixed a trailing whitespace. Damn the formatting rules are strict
* Added the copy statement
* Fix typos and grammar mistakes in docs and examples
* Fix typos in docstrings and comments
* Fix spelling of `tokenizer` in model tests
* Remove erroneous spaces in decorators
* Remove extra spaces in Markdown link texts
* Add modelss
* Add 2 more models
* add models to tocrree
* Add modles
* Update docs/source/ja/model_doc/detr.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/deit.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/deplot.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix bugs
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Adding [T5/MT5/UMT5]ForTokenClassification
* Add auto mappings for T5ForTokenClassification and variants
* Adding ForTokenClassification to the list of models
* Adding attention_mask param to the T5ForTokenClassification test
* Remove outdated comment in test
* Adding EncoderOnly and Token Classification tests for MT5 and UMT5
* Fix typo in umt5 string
* Add tests for all the existing MT5 models
* Fix wrong comment in dependency_versions_table
* Reverting change to common test for _keys_to_ignore_on_load_missing
The test is correctly picking up redundant keys in _keys_to_ignore_on_load_missing.
* Removing _keys_to_ignore_on_missing from MT5 since the key is not used in the model
* Add fix-copies to MT5ModelTest
* Port core files + ESM (because ESM code is odd)
* Search-replace in modelling code
* Fix up transfo_xl as well
* Fix other core files + tests (still need to add correct import to tests)
* Fix cookiecutter
* make fixup, fix imports in some more core files
* Auto-add imports to tests
* Cleanup, add imports to sagemaker tests
* Use correct exception for importing tf_keras
* Fixes in modeling_tf_utils
* make fixup
* Correct version parsing code
* Ensure the pipeline tests correctly revert to float32 after each test
* Ensure the pipeline tests correctly revert to float32 after each test
* More tf.keras -> keras
* Add dtype cast
* Better imports of tf_keras
* Add a cast for tf.assign, just in case
* Fix callback imports
The documentation says "We refer to this Model parallelism as “Vertical” because of how models are typically visualized.", but then visualizes the model horizontally. This change visualizes the model indeed vertically.
fix typo:
from:
"model = TFAutoModelForQuestionAnswering("distilbert-base-uncased")"
to:
model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased")
* update doc
* revert
* typo fix
* refine
* add dtypes
* Update docs/source/en/perf_train_cpu.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_train_cpu.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_train_cpu.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* no comma
* use avx512-vnni
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* first commit
* correct default value non causal
* update config and modeling code
* update converting checkpoint
* clean modeling and fix tests
* make style
* add new config parameters to docstring
* fix copied from statements
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* make position_embeddings_type docstrings clearer
* clean converting script
* remove function not used
* clean modeling file
* apply suggestion for test file + add convert script to not_doctested
* modify tests according to review - cleaner logic and more tests
* Apply nit suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add checker of valid position embeddings type
* instantiate new layer norm layer with the right eps
* fix freeze_feature_encoder since it can be None in some cases
* add test same output in convert script
* restore wav2vec2conformer and add new model
* create processor and FE + clean
* add new model code
* fix convert script and set default config parameters
* correct model id paths
* make style
* make fix-copies and cleaning files
* fix copied from statements
* complete .md and fixe copies
* clean convert script argument defaults
* fix config parameters docstrings
* fix config docstring
* add copied from and enrich FE tests
* fix copied from and repo-consistency
* add autotokenizer
* make test input length shorter and change docstring code
* fix docstrings and copied from
* add add_adapter to ASR training example
* make testing of adapters more robust
* adapt to multi adapter layers
* refactor input_values->input_features and remove w2v2-bert feature extractor
* remove pretraining model
* remove depreciated features and useless lines
* add copied from and ignore statements to modeling tests
* remove pretraining model #2
* change import in convert script
* change default in convert script
* update readme and remove useless line
* Update tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* refactor BERT to Bert for consistency
* remove useless ignore copy statement
* add persistent to buffer in rotary
* add eps in LayerNorm init and remove copied from
* add adapter activation parameters and add copied from statements
* Fix copied statements and add unitest.skip reasons
* add copied statement in test_processor
* refactor processor
* make style
* replace numpy random by torch rand
* remove expected output CTC
* improve converting script with processor class
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove gumbel class
* remove tests related to previously deleted class
* Update src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* correct typos
* remove uused parameters
* update processor to takes both text and audio
* update checkpoints
* update expected output and add ctc expected output
* add label_attention_mask
* replace pt with np in processor tests
* fix typo
* revert to behaviour with labels_attention_mask
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Improving Training Performance and Scaling documentation by adding PEFT techniques to suggestions to reduce memory requirements for training
* Update docs/source/en/perf_train_gpu_one.md
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* added args to the pipeline
* added test
* more sensical tests
* fixup
* docs
* typo
;
* docs
* made changes to support named args
* fixed test
* docs update
* styles
* docs
* docs
* Add first draft
* Use appropriate gelu function
* More improvements
* More improvements
* More improvements
* Convert checkpoint
* More improvements
* Improve docs, remove print statements
* More improvements
* Add link
* remove unused masking function
* begin tokenizer
* do_lower_case
* debug
* set split_special_tokens=True
* Remove script
* Fix style
* Fix rebase
* Use same design as CLIP
* Add fast tokenizer
* Add SiglipTokenizer to init, remove extra_ids
* Improve conversion script
* Use smaller inputs in conversion script
* Update conversion script
* More improvements
* Add processor to conversion script
* Add tests
* Remove print statements
* Add tokenizer tests
* Fix more tests
* More improvements related to weight initialization
* More improvements
* Make more tests pass
* More improvements
* More improvements
* Add copied from
* Add canonicalize_text
* Enable fast tokenizer tests
* More improvements
* Fix most slow tokenizer tests
* Address comments
* Fix style
* Remove script
* Address some comments
* Add copied from to tests
* Add more copied from
* Add more copied from
* Add more copied from
* Remove is_flax_available
* More updates
* Address comment
* Remove SiglipTokenizerFast for now
* Add caching
* Remove umt5 test
* Add canonicalize_text inside _tokenize, thanks Arthur
* Fix image processor tests
* Skip tests which are not applicable
* Skip test_initialization
* More improvements
* Compare pixel values
* Fix doc tests, add integration test
* Add do_normalize
* Remove causal mask and leverage ignore copy
* Fix attention_mask
* Fix remaining tests
* Fix dummies
* Rename temperature and bias
* Address comments
* Add copied from to tokenizer tests
* Add SiglipVisionModel to auto mapping
* Add copied from to image processor tests
* Improve doc
* Remove SiglipVisionModel from index
* Address comments
* Improve docs
* Simplify config
* Add first draft
* Make it like mistral
* More improvements
* Fix attention_mask
* Fix output_attentions
* Add note in docs
* Convert multilingual model
* Convert large checkpoint
* Convert more checkpoints
* Add pipeline support, correct image_mean and image_std
* Use padding=max_length by default
* Make processor like llava
* Add code snippet
* Convert more checkpoints
* Set keep_punctuation_string=None as in OpenCLIP
* Set normalized=False for special tokens
* Fix doc test
* Update integration test
* Add figure
* Update organization
* Happy new year
* Use AutoModel everywhere
---------
Co-authored-by: patil-suraj <surajp815@gmail.com>
* Sort es/_toctree.yml like en/_toctree.yml
* Run make style
* Add -Rendimiento y escalabilidad- section to es/_toctree.yml
* Run make style
* Add s to section
* Add translate of performance.md
* Add performance.md to es/_toctree.yml
* Run make styele
* Fix docs links
* Run make style
* start - docs, SpeechT5 copy and rename
* add relevant code from FastSpeech2 draft, have tests pass
* make it an actual conformer, demo ex.
* matching inference with original repo, includes debug code
* refactor nn.Sequentials, start more desc. var names
* more renaming
* more renaming
* vocoder scratchwork
* matching vocoder outputs
* hifigan vocoder conversion script
* convert model script, rename some config vars
* replace postnet with speecht5's implementation
* passing common tests, file cleanup
* expand testing, add output hidden states and attention
* tokenizer + passing tokenizer tests
* variety of updates and tests
* g2p_en pckg setup
* import structure edits
* docstrings and cleanup
* repo consistency
* deps
* small cleanup
* forward signature param order
* address comments except for masks and labels
* address comments on attention_mask and labels
* address second round of comments
* remove old unneeded line
* address comments part 1
* address comments pt 2
* rename auto mapping
* fixes for failing tests
* address comments part 3 (bart-like, train loss)
* make style
* pass config where possible
* add forward method + tests to WithHifiGan model
* make style
* address arg passing and generate_speech comments
* address Arthur comments
* address Arthur comments pt2
* lint changes
* Sanchit comment
* add g2p-en to doctest deps
* move up self.encoder
* onnx compatible tensor method
* fix is symbolic
* fix paper url
* move models to espnet org
* make style
* make fix-copies
* update docstring
* Arthur comments
* update docstring w/ new updates
* add model architecture images
* header size
* md wording update
* make style
* fix: minor enhancement and fix in bounding box visualization example
The example that was trying to visualize the bounding box was not considering an edge case,
where the bounding box can be un-normalized. So using the same set of code, we can not get
results with a different dataset with un-normalized bounding box. This commit fixes that.
* run make clean
* add an additional note on the scenarios where the box viz code works
---------
Co-authored-by: Anindyadeep <anindya@pop-os.localdomain>
* upfaste
* Update
* Update docs/source/ja/model_doc/deformable_detr.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/data2vec.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/cvt.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* add suggestions
* Toctree update
* remove git references
* Update docs/source/ja/_toctree.yml
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/decision_transformer.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Add glossary to es/_toctree.yml
* Add glossary.md to es/
* A section translated
* B and C section translated
* Fix typo in en/glossary.md C section
* D section translated | Add a extra line in en/glossary.md
* E and F section translated | Fix typo in en/glossary.md
* Fix words preentrenado
* H and I section translated | Fix typo in en/glossary.md
* L section translated
* M and N section translated
* P section translated
* R section translated
* S section translated
* T section translated
* U and Z section translated | Fix TensorParallel link in both files
* Fix word
* add sdpa
* wip
* cleaning
* add ref
* yet more cleaning
* and more :)
* wip llama
* working llama
* add output_attentions=True support
* bigcode sdpa support
* fixes
* gpt-bigcode support, require torch>=2.1.1
* add falcon support
* fix conflicts falcon
* style
* fix attention_mask definition
* remove output_attentions from attnmaskconverter
* support whisper without removing any Copied from statement
* fix mbart default to eager renaming
* fix typo in falcon
* fix is_causal in SDPA
* check is_flash_attn_2_available in the models init as well in case the model is not initialized through from_pretrained
* add warnings when falling back on the manual implementation
* precise doc
* wip replace _flash_attn_enabled by config.attn_implementation
* fix typo
* add tests
* style
* add a copy.deepcopy on the config in from_pretrained, as we do not want to modify it inplace
* obey to config.attn_implementation if a config is passed in from_pretrained
* fix is_torch_sdpa_available when torch is not installed
* remove dead code
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/bart/modeling_bart.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove duplicate pretraining_tp code
* add dropout in llama
* precise comment on attn_mask
* add fmt: off for _unmask_unattended docstring
* precise num_masks comment
* nuke pretraining_tp in LlamaSDPAAttention following Arthur's suggestion
* cleanup modeling_utils
* backward compatibility
* fix style as requested
* style
* improve documentation
* test pass
* style
* add _unmask_unattended tests
* skip meaningless tests for idefics
* hard_check SDPA requirements when specifically requested
* standardize the use if XXX_ATTENTION_CLASSES
* fix SDPA bug with mem-efficient backend on CUDA when using fp32
* fix test
* rely on SDPA is_causal parameter to handle the causal mask in some cases
* fix FALCON_ATTENTION_CLASSES
* remove _flash_attn_2_enabled occurences
* fix test
* add OPT to the list of supported flash models
* improve test
* properly test on different SDPA backends, on different dtypes & properly handle separately the pad tokens in the test
* remove remaining _flash_attn_2_enabled occurence
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update docs/source/en/perf_infer_gpu_one.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove use_attn_implementation
* fix docstring & slight bug
* make attn_implementation internal (_attn_implementation)
* typos
* fix tests
* deprecate use_flash_attention_2=True
* fix test
* add back llama that was removed by mistake
* fix tests
* remove _flash_attn_2_enabled occurences bis
* add check & test that passed attn_implementation is valid
* fix falcon torchscript export
* fix device of mask in tests
* add tip about torch.jit.trace and move bt doc below sdpa
* fix parameterized.expand order
* move tests from test_modeling_attn_mask_utils to test_modeling_utils as a relevant test class is already there
* update sdpaattention class with the new cache
* Update src/transformers/configuration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/bark/modeling_bark.py
* address review comments
* WIP torch.jit.trace fix. left: test both eager & sdpa
* add test for torch.jit.trace for both eager/sdpa
* fix falcon with torch==2.0 that needs to use sdpa
* fix doc
* hopefully last fix
* fix key_value_length that has no default now in mask converter
* is it flacky?
* fix speculative decoding bug
* tests do pass
* fix following #27907
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add pad_truncation to es/_toctree.yml
* Add pad_truncation.md to es/
* Translated first two paragraph
* Translated paddig argument section
* Translated truncation argument section
* Translated final paragraphs
* Translated table
* Fixed typo in the table of en/pad_truncation.md
* Run make style | Fix a word
* Add Padding (relleno) y el Truncation (truncamiento) in the final paragraphs
* Fix relleno and truncamiento words
* Draft version of new KV Caching
This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
/ StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
in a third-party or in transformers directly
* Address numerous PR suggestions
1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
3. Remove __bool__ and __getitem__ magic as they're confusing.
4. past_key_values.update(key, value, idx) now returns key, value.
5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
6. Separate key_cache and value_cache.
Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.
* Implement the SinkCache through backward+forward rotations
* Integrate (Sink)Cache with Llama FA2
* Set use_legacy_cache=True as default, allows for test passes
* Move from/to_legacy_cache to ...Model class
* Undo unnecessary newline change
* Remove copy utility from deprecated OpenLlama
* Match import style
* manual rebase with main
* Cache class working with generate (#1)
* Draft version of new KV Caching
This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
/ StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
in a third-party or in transformers directly
* Address numerous PR suggestions
1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
3. Remove __bool__ and __getitem__ magic as they're confusing.
4. past_key_values.update(key, value, idx) now returns key, value.
5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
6. Separate key_cache and value_cache.
Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.
* Integrate (Sink)Cache with Llama FA2
* Move from/to_legacy_cache to ...Model class
* Undo unnecessary newline change
* Match import style
* working generate
* Add tests; Simplify code; Apply changes to Mistral and Persimmon
* fix rebase mess
* a few more manual fixes
* last manual fix
* propagate changes to phi
* upgrade test
* add use_legacy_cache docstring; beef up tests
* reintroduce unwanted deletes
---------
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
* move import
* add default to model_kwargs.get('use_legacy_cache')
* correct failing test
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* apply PR suggestions
* fix failing test
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
* PR comments
* tmp commit
* add docstrings
* more tests, more docstrings, add to docs
* derp
* tmp commit
* tmp dbg
* more dbg
* fix beam search bug
* cache can be a list of tuples in some models
* fix group beam search
* all but sinkcache integration tests
* fix sink cache and add hard integration test
* now also compatible with input_embeds input
* PR comments
* add Cache support to Phi+FA2
* make fixup
---------
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add models
* Add more models
* Update docs/source/ja/model_doc/convnextv2.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/convbert.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/codegen.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update translation errors and author names
* link update
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Updates the Distributed CPU documentation to add a Kubernetes example
* Small edits
* Fixing link
* Adding missing new lines
* Minor edits
* Update to include Dockerfile snippet
* Add comment about tuning env var
* Updates based on review comments
* add model like
* logits match
* minor fixes
* fixes
* up
* up
* add todo
* llava processor
* keep the processor simple
* add conversion script
* fixup
* fix copies
* up
* add to index
* fix config + logits
* fix
* refactor
* more refactor
* more refactor
* fix copies
* add authors
* v1 tests
* add `LlavaProcessor` in init
* remove unneeded import
* up
* up
* docs
* up
* fix CI
* fix CI
* add attention mask in test
* make fixup
* remove the vision model
* that' s the dirty way to do it
* nits
* nits
* updates
* add more tests
* add input tests
* fixup
* more styling
* nits
* updates amd cleanup
* fixup the generation expected results
* fix the testing script
* some cleanup and simplification which does not work yet but almost there!
* make correct dispatch operations
* vectorize works for batch of images and text
* last todos
* nits
* update test and modeling code
* remove useless function for now
* fix few issues
* fix generation
* some nits
* add bakllava
* nits
* remove duplicated code
* finis merge
* cleanup
* missed this line
* fill the todos
* add left padding offset
* add left and rignt padding logic
* bool to properly index
* make sure
* more cleanups
* batch is fixed 😉
* add correct device for tensor creation
* fix some dtype missmatch
* ruff
* update conversion script
* Update src/transformers/__init__.py
* fa 2 support + fix conversion script
* more
* correct reshaping
* fix test dict
* fix copies by ignoring
* fix nit
* skip clip vision model
* fixup
* fixup
* LlavaForVisionText2Text -> LlavaForCausalLM
* update
* fix
* raise correct errors
* fix
* docs
* nuke for now
* nits here and there
* fixup
* fix remaining tests
* update LlavaForConditionalGeneration instead of CausalLM
* fixups
* pipeline support
* slow and piepline tests
* supports batch
* nits
* cleanup
* fix first integration tests
* add pad token where needed
* correct etsts
* fixups
* update pipeline testr
* fix quality
* nits
* revert unneeded change
* nit
* use BatchFeature
* from ...feature_extraction_utils import BatchFeature
* nits
* nits
* properly update
* more f*** nits
* fix copies
* comment
* keep slow test slow
* Update src/transformers/models/llava/processing_llava.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add piepline example
* add pixel values in docstrign
* update pr doctest
* fix
* fix slow tests
* remove hack
* fixup
* small note
* forward contrib credits from PR25789
* forward contrib credits from original implementation and work
* add arthur
* Update src/transformers/models/llava/processing_llava.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* update docstring
* nit
* move to not doctested because of timeout issues
* fixup
* add description
* more
* fix-copies
* fix docs
* add beam search
* add more comments
* add typehints on processor
* add speedup plot
* update slow tests and docs
* push test
* push batched test
* fix batched generation with different number of images
* remove benchmark due to a bug
* fix test
* fix copies
* add gcolab demo
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: shauray8 <shauray8@users.noreply.github.com>
Co-authored-by: haotian-liu <haotian-liu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Copies `modeling_flax_gpt_neo.py` to start
* MLP Block. WIP Attention and Block
* Adds Flax implementation of `LlamaMLP`
Validated with in-file test.
Some slight numeric differences, but assuming it isn't an issue
* Adds `FlaxLlamaRMSNorm` layer
`flax.linen` includes `RMSNorm` layer but not necessarily in all
versions. Hence, we add in-file.
* Adds FlaxLlamaAttention
Copied from GPT-J as it has efficient caching implementation as well as
rotary embeddings.
Notice numerically different, but not by a huge amount. Needs
investigating
* Adds `FlaxLlamaDecoderLayer`
numerically inaccurate, debugging..
* debugging rotary mismatch
gptj uses interleaved whilst llama uses contiguous
i think they match now but still final result is wrong.
maybe drop back to just debugging attention layer?
* fixes bug with decoder layer
still somewhat numerically inaccurate, but close enough for now
* adds markers for what to implement next
the structure here diverges a lot from the PT version.
not a big fan of it, but just get something working for now
* implements `FlaxLlamaBlockCollection`]
tolerance must be higher than expected, kinda disconcerting
* Adds `FlaxLlamaModule`
equivalent PyTorch model is `LlamaModel`
yay! a language model🤗
* adds `FlaxLlamaForCausalLMModule`
equivalent to `LlamaForCausalLM`
still missing returning dict or tuple, will add later
* start porting pretrained wrappers
realised it probably needs return dict as a prereq
* cleanup, quality, style
* readds `return_dict` and model output named tuples
* (tentatively) pretrained wrappers work 🔥
* fixes numerical mismatch in `FlaxLlamaRMSNorm`
seems `jax.lax.rsqrt` does not match `torch.sqrt`.
manually computing `1 / jax.numpy.sqrt` results in matching values.
* [WIP] debugging numerics
* numerical match
I think issue was accidental change of backend. forcing CPU fixes test.
We expect some mismatch on GPU.
* adds in model and integration tests for Flax Llama
summary of failing:
- mul invalid combination of dimensions
- one numerical mismatch
- bf16 conversion (maybe my local backend issue)
- params are not FrozenDict
* adds missing TYPE_CHECKING import and `make fixup`
* adds back missing docstrings
needs review on quality of docstrings, not sure what is required.
Furthermore, need to check if `CHECKPOINT_FOR_DOC` is valid. See TODO
* commenting out equivalence test as can just use common
* debugging
* Fixes bug where mask and pos_ids were swapped in pretrained models
This results in all tests passing now 🔥
* cleanup of modeling file
* cleanup of test file
* Resolving simpler review comments
* addresses more minor review comments
* fixing introduced pytest errors from review
* wip additional slow tests
* wip tests
need to grab a GPU machine to get real logits for comparison
otherwise, slow tests should be okay
* `make quality`, `make style`
* adds slow integration tests
- checking logits
- checking hidden states
- checking generation outputs
* `make fix-copies`
* fix mangled function following `make fix-copies`
* adds missing type checking imports
* fixes missing parameter checkpoint warning
* more finegrained 'Copied from' tags
avoids issue of overwriting `LLAMA_INPUTS_DOCSTRING`
* swaps import guards
??? how did these get swapped initially?
* removing `inv_freq` again as pytorch version has now removed
* attempting to get CI to pass
* adds doc entries for llama flax models
* fixes typo in __init__.py imports
* adds back special equivalence tests
these come from the gpt neo flax tests. there is special behaviour for these models that needs to override the common version
* overrides tests with dummy to see if CI passes
need to fill in these tests later
* adds my contribution to docs
* `make style; make quality`
* replaces random masking with fixed to work with flax version
* `make quality; make style`
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* updates `x`->`tensor` in `rotate_half`
* addresses smaller review comments
* Update docs/source/en/model_doc/llama.md
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* adds integration test class
* adds `dtype` to rotary embedding to cast outputs
* adds type to flax llama rotary layer
* `make style`
* `make fix-copies`
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* applies suggestions from review
* Update modeling_flax_llama.py
* `make fix-copies`
* Update tests/models/llama/test_modeling_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Update src/transformers/models/llama/modeling_flax_llama.py
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* fixes shape mismatch in FlaxLlamaMLP
* applies some suggestions from reviews
* casts attn output logits to f32 regardless of dtype
* adds attn bias using `LlamaConfig.attention_bias`
* adds Copied From comments to Flax Llama test
* mistral and persimmon test change -copy from llama
* updates docs index
* removes Copied from in tests
it was preventing `make fix-copies` from succeeding
* quality and style
* ignores FlaxLlama input docstring
* adds revision to `_CHECKPOINT_FOR_DOC`
* repo consistency and quality
* removes unused import
* removes copied from from Phi test
now diverges from llama tests following FlaxLlama changes
* adds `_REAL_CHECKPOINT_FOR_DOC`
* removes refs from pr tests
* reformat to make ruff happy
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Add models
* Add models and update `_toctree.yml`
* Update docs/source/ja/model_doc/chinese_clip.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/camembert.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/bros.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/bros.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/blip-2.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/camembert.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* solve merge conflicts and update paper titles
* Update docs/source/ja/model_doc/bridgetower.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/canine.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/chinese_clip.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update the authons name in bros..md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Copy perplexity.md file to es/ folder
* Adding perplexity to es/_toctree.yml
* Translate first section
* Calculating PPL section translate
* Example section translate
* fix translate of log-likehood
* Fix title translate
* Fix \ in second paragraph
* Change verosimilitud for log-likelihood
* Run 'make style'
* v1 fusing modules
* add fused mlp support
* up
* fix CI
* block save_pretrained
* fixup
* small fix
* add new condition
* add v1 docs
* add some comments
* style
* fix nit
* adapt from suggestion
* add check
* change arg names
* change variables name
* Update src/transformers/integrations/awq.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* style
* split up into 3 different private methods
* more conditions
* more checks
* add fused tests for custom models
* fix
* fix tests
* final update docs
* final fixes
* fix importlib metadata
* Update src/transformers/utils/quantization_config.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* change it to `do_fuse`
* nit
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* few fixes
* revert
* fix test
* fix copies
* raise error if model is not quantized
* add test
* use quantization_config.config when fusing
* Update src/transformers/modeling_utils.py
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Create asr.md
* Create audio_classification.md
* Create document_question_answering.md
* Update document_question_answering.md
* add
* add
* ggg
* gg
* add masked_language_modeling.md
* add monocular_depth estimation
* new
* dd
* add
* add
* cl
* add
* Add Traslation.md
* hgf
* Added docs to Toctree file
* Update docs/source/ja/tasks/asr.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/asr.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/image_classification.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/idefics.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/image_captioning.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Fix docs and revert changes
* Update docs/source/en/tasks/idefics.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/language_modeling.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/language_modeling.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/language_modeling.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/prompting.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/masked_language_modeling.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/masked_language_modeling.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/prompting.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/object_detection.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/semantic_segmentation.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/semantic_segmentation.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/token_classification.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/translation.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/visual_question_answering.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/summarization.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* changes in review 1 and 2
* add
* Update docs/source/ja/tasks/asr.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/tasks/translation.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* changes
* Update docs/source/ja/_toctree.yml
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/_toctree.yml
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/_toctree.yml
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update _toctree.yml
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* add working convertion script
* first non-working version of modeling code
* update modeling code (working)
* make style
* make fix-copies
* add config docstrings
* add config to ignore docstrings formatage due to unconventional markdown
* fix copies
* fix generation num_return_sequences
* enrich docs
* add and fix tests beside integration tests
* update integration tests
* update repo id
* add tie weights and make style
* correct naming in .md
* fix imports and so on
* correct docstrings
* fix fp16 speech forward
* fix speechencoder attention
* make style
* fix copied from
* rename SeamlessM4Tv2-v2 to SeamlessM4Tv2
* Apply suggestions on configuration
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove useless public models
* fix private models + better naming for T2U models
* clean speech encoder relative position embeddings
* refactor chunk attention
* add docstrings to chunk attention method
* improve naming and docstrings
* rename some attention variables + add temperature sampling in T2U model
* rename DOCSTRINGS variable names
* make style + remove 2 useless config parameters
* enrich model card
* remove any attention_head reference + fix temperature in T2U
* new fmt and make style
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* rename spkr_id->speaker_id and change docstrings of get_char_input_ids
* simplify v2attention
* make style
* Update seamless_m4t_v2.md
* update code and tests with last update
* update repo ids
* fill article name, abstract andauthors
* update not_doctested and slow_doc tests
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add distribution head to forecasting
* formatting
* Add generate function for forecasting
* Add generate function to prediction task
* formatting
* use argsort
* add past_observed_mask ordering
* fix arguments
* docs
* add back test_model_outputs_equivalence test
* formatting
* cleanup
* formatting
* use ACT2CLS
* formatting
* fix add_start_docstrings decorator
* add distribution head and generate function to regression task
add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput, PatchTSTForRegressionOutput.
* add distribution head and generate function to regression task
add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput, PatchTSTForRegressionOutput.
* fix typos
* add forecast_masking
* fixed tests
* use set_seed
* fix doc test
* formatting
* Update docs/source/en/model_doc/patchtst.md
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* better var names
* rename PatchTSTTranspose
* fix argument names and docs string
* remove compute_num_patches and unused class
* remove assert
* renamed to PatchTSTMasking
* use num_labels for classification
* use num_labels
* use default num_labels from super class
* move model_type after docstring
* renamed PatchTSTForMaskPretraining
* bs -> batch_size
* more review fixes
* use hidden_state
* rename encoder layer and block class
* remove commented seed_number
* edit docstring
* Add docstring
* formatting
* use past_observed_mask
* doc suggestion
* make fix-copies
* use Args:
* add docstring
* add docstring
* change some variable names and add PatchTST before some class names
* formatting
* fix argument types
* fix tests
* change x variable to patch_input
* format
* formatting
* fix-copies
* Update tests/models/patchtst/test_modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* move loss to forward
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* formatting
* fix a bug when pre_norm is set to True
* output_hidden_states is set to False as default
* set pre_norm=True as default
* format docstring
* format
* output_hidden_states is None by default
* add missing docs
* better var names
* docstring: remove default to False in output_hidden_states
* change labels name to target_values in regression task
* format
* fix tests
* change to forecast_mask_ratios and random_mask_ratio
* change mask names
* change future_values to target_values param in the prediction class
* remove nn.Sequential and make PatchTSTBatchNorm class
* black
* fix argument name for prediction
* add output_attentions option
* add output_attentions to PatchTSTEncoder
* formatting
* Add attention output option to all classes
* Remove PatchTSTEncoderBlock
* create PatchTSTEmbedding class
* use config in PatchTSTPatchify
* Use config in PatchTSTMasking class
* add channel_attn_weights
* Add PatchTSTScaler class
* add output_attentions arg to test function
* format
* Update doc with image patchtst.md
* fix-copies
* rename Forecast <-> Prediction
* change name of a few parameters to match with PatchTSMixer.
* Remove *ForForecasting class to match with other time series models.
* make style
* Remove PatchTSTForForecasting in the test
* remove PatchTSTForForecastingOutput class
* change test_forecast_head to test_prediction_head
* style
* fix docs
* fix tests
* change num_labels to num_targets
* Remove PatchTSTTranspose
* remove arguments in PatchTSTMeanScaler
* remove arguments in PatchTSTStdScaler
* add config as an argument to all the scaler classes
* reformat
* Add norm_eps for batchnorm and layernorm
* reformat.
* reformat
* edit docstring
* update docstring
* change variable name pooling to pooling_type
* fix output_hidden_states as tuple
* fix bug when calling PatchTSTBatchNorm
* change stride to patch_stride
* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder
* formatting
* initialize scalers with configs
* edit output_hidden_states
* style
* fix forecast_mask_patches doc string
* doc improvements
* move summary to the start
* typo
* fix docstring
* turn off masking when using prediction, regression, classification
* return scaled output
* adjust output when using distribution head
* remove _num_patches function in the config
* get config.num_patches from patchifier init
* add output_attentions docstring, remove tuple in output_hidden_states
* change SamplePatchTSTPredictionOutput and SamplePatchTSTRegressionOutput to SamplePatchTSTOutput
* remove print("model_class: ", model_class)
* change encoder_attention_heads to num_attention_heads
* change norm to norm_layer
* change encoder_layers to num_hidden_layers
* change shared_embedding to share_embedding, shared_projection to share_projection
* add output_attentions
* more robust check of norm_type
* change dropout_path to path_dropout
* edit docstring
* remove positional_encoding function and add _init_pe in PatchTSTPositionalEncoding
* edit shape of cls_token and initialize it
* add a check on the num_input_channels.
* edit head_dim in the Prediction class to allow the use of cls_token
* remove some positional_encoding_type options, remove learn_pe arg, initalize pe
* change Exception to ValueError
* format
* norm_type is "batchnorm"
* make style
* change cls_token shape
* Change forecast_mask_patches to num_mask_patches. Remove forecast_mask_ratios.
* Bring PatchTSTClassificationHead on top of PatchTSTForClassification
* change encoder_ffn_dim to ffn_dim and edit the docstring.
* update variable names to match with the config
* add generation tests
* change num_mask_patches to num_forecast_mask_patches
* Add examples explaining the use of these models
* make style
* Revert "Revert "[time series] Add PatchTST (#25927)" (#27486)"
This reverts commit 78f6ed6c70.
* make style
* fix default std scaler's minimum_scale
* fix docstring
* close code blocks
* Update docs/source/en/model_doc/patchtst.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/patchtst/test_modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/configuration_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix tests
* add add_start_docstrings
* move examples to the forward's docstrings
* update prepare_batch
* update test
* fix test_prediction_head
* fix generation test
* use seed to create generator
* add output_hidden_states and config.num_patches
* add loc and scale args in PatchTSTForPredictionOutput
* edit outputs if if not return_dict
* use self.share_embedding to check instead checking type.
* remove seed
* make style
* seed is an optional int
* fix test
* generator device
* Fix assertTrue test
* swap order of items in outputs when return_dict=False.
* add mask_type and random_mask_ratio to unittest
* Update modeling_patchtst.py
* add add_start_docstrings for regression model
* make style
* update model path
* Edit the ValueError comment in forecast_masking
* update examples
* make style
* fix commented code
* update examples: remove config from from_pretrained call
* Edit example outputs
* Set default target_values to None
* remove config setting in regression example
* Update configuration_patchtst.py
* Update configuration_patchtst.py
* remove config from examples
* change default d_model and ffn_dim
* norm_eps default
* set has_attentions to Trye and define self.seq_length = self.num_patche
* update docstring
* change variable mask_input to do_mask_input
* fix blank space.
* change logger.debug to logger.warning.
* remove unused PATCHTST_INPUTS_DOCSTRING
* remove all_generative_model_classes
* set test_missing_keys=True
* remove undefined params in the docstring.
---------
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add `model_docs`
* Add
* Update Model adoc
* Update docs/source/ja/model_doc/bark.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/beit.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/bit.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/blenderbot.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/blenderbot-small.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* update reiew-1
* Update toctree.yml
* translating docs and fixes of PR #27401
* Update docs/source/ja/model_doc/bert.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/model_doc/bert-generation.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update the model docs
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs: replace torch.distributed.run by torchrun
`transformers` now officially support pytorch >= 1.10.
The entrypoint `torchrun`` is present from 1.10 onwards.
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
* Update src/transformers/trainer.py
with @ArthurZucker's suggestion
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Change "convert predictions to logits" to "convert logits to
predictions" to fix semantic error in the evaluation section. Logits
need to be converted to predictions to evaluate the accuracy, not the
other way round
* added flash attention for opt
* added to list
* fix use cache (#3)
* style fix
* fix text
* test fix2
* reverted until 689f599
* torch fx tests are working now!
* small fix
* added TODO docstring
* changes
* comments and .md file modification
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* initial commit
* Add inital testing files and modify __init__ files to add UnivNet imports.
* Fix some bugs
* Add checkpoint conversion script and add references to transformers pre-trained model.
* Add UnivNet entries for auto.
* Add initial docs for UnivNet.
* Handle input and output shapes in UnivNetGan.forward and add initial docstrings.
* Write tests and make them pass.
* Write docs.
* Add UnivNet doc to _toctree.yml and improve docs.
* fix typo
* make fixup
* make fix-copies
* Add upsample_rates parameter to config and improve config documentation.
* make fixup
* make fix-copies
* Remove unused upsample_rates config parameter.
* apply suggestions from review
* make style
* Verify and add reason for skipped tests inherited from ModelTesterMixin.
* Add initial UnivNetGan integration tests
* make style
* Remove noise_length input to UnivNetGan and improve integration tests.
* Fix bug and make style
* Make UnivNet integration tests pass
* Add initial code for UnivNetFeatureExtractor.
* make style
* Add initial tests for UnivNetFeatureExtractor.
* make style
* Properly initialize weights for UnivNetGan
* Get feature extractor fast tests passing
* make style
* Get feature extractor integration tests passing
* Get UnivNet integration tests passing
* make style
* Add UnivNetGan usage example
* make style and use feature extractor from hub in integration tests
* Update tips in docs
* apply suggestions from review
* make style
* Calculate padding directly instead of using get_padding methods.
* Update UnivNetFeatureExtractor.to_dict to be UnivNet-specific.
* Update feature extractor to support using model(**inputs) and add the ability to generate noise and pad the end of the spectrogram in __call__.
* Perform padding before generating noise to ensure the shapes are correct.
* Rename UnivNetGan.forward's noise_waveform argument to noise_sequence.
* make style
* Add tests to test generating noise and padding the end for UnivNetFeatureExtractor.__call__.
* Add tests for checking batched vs unbatched inputs for UnivNet feature extractor and model.
* Add expected mean and stddev checks to the integration tests and make them pass.
* make style
* Make it possible to use model(**inputs), where inputs is the output of the feature extractor.
* fix typo in UnivNetGanConfig example
* Calculate spectrogram_zero from other config values.
* apply suggestions from review
* make style
* Refactor UnivNet conversion script to use load_state_dict (following persimmon).
* Rename UnivNetFeatureExtractor to UnivNetGanFeatureExtractor.
* make style
* Switch to using torch.tensor and torch.testing.assert_close for testing expected values/slices.
* make style
* Use config in UnivNetGan modeling blocks.
* make style
* Rename the spectrogram argument of UnivNetGan.forward to input_features, following Whisper.
* make style
* Improving padding documentation.
* Add UnivNet usage example to the docs.
* apply suggestions from review
* Move dynamic_range_compression computation into the mel_spectrogram method of the feature extractor.
* Improve UnivNetGan.forward return docstring.
* Update table in docs/source/en/index.md.
* make fix-copies
* Rename UnivNet components to have pattern UnivNet*.
* make style
* make fix-copies
* Update docs
* make style
* Increase tolerance on flaky unbatched integration test.
* Remove torch.no_grad decorators from UnivNet integration tests to try to avoid flax/Tensorflow test errors.
* Add padding_mask argument to UnivNetModel.forward and add batch_decode feature extractor method to remove padding.
* Update documentation and clean up padding code.
* make style
* make style
* Remove torch dependency from UnivNetFeatureExtractor.
* make style
* Fix UnivNetModel usage example
* Clean up feature extractor code/docstrings.
* apply suggestions from review
* make style
* Add comments for tests skipped via ModelTesterMixin flags.
* Add comment for model parallel tests skipped via the test_model_parallel ModelTesterMixin flag.
* Add # Copied from statements to copied UnivNetFeatureExtractionTest tests.
* Simplify UnivNetFeatureExtractorTest.test_batch_decode.
* Add support for unbatched padding_masks in UnivNetModel.forward.
* Refactor unbatched padding_mask support.
* make style
* tvp model for video grounding
add tokenizer auto
fix param in TVPProcessor
add docs
clear comments and enable different torch dtype
add image processor test and model test and fix code style
* fix conflict
* fix model doc
* fix image processing tests
* fix tvp tests
* remove torch in processor
* fix grammar error
* add more details on tvp.md
* fix model arch for loss, grammar, and processor
* add docstring and do not regard TvpTransformer, TvpVisionModel as individual model
* use pad_image
* update copyright
* control first downsample stride
* reduce first only works for ResNetBottleNeckLayer
* fix param name
* fix style
* add testing
* fix style
* rm init_weight
* fix style
* add post init
* fix comments
* do not test TvpTransformer
* fix warning
* fix style
* fix example
* fix config map
* add link in config
* fix comments
* fix style
* rm useless param
* change attention
* change test
* add notes
* fix comments
* fix tvp
* import checkpointing
* fix gradient checkpointing
* Use a more accurate example in readme
* update
* fix copy
* fix style
* update readme
* delete print
* remove tvp test_forward_signature
* remove TvpTransformer
* fix test init model
* merge main and make style
* fix tests and others
* fix image processor
* fix style and model_input_names
* fix tests
* Enable large-v3 downloading and update language list
* Fix type annotation
* make fixup
* Export Whisper feature extractor
* Fix error after extractor loading
* Do not use pre-computed mel filters
* Save the full preprocessor properly
* Update docs
* Remove comment
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add alignment heads consistent with each Whisper version
* Remove alignment heads calculation
* Save fast tokenizer format as well
* Fix slow to fast conversion
* Fix bos/eos/pad token IDs in the model config
* Add decoder_start_token_id to config
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Updated albert.md doc for ALBERT model
* Update docs/source/en/model_doc/albert.md
Fixed Resources heading
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update the ALBERT model doc resources
Fixed resource example for fine-tuning the ALBERT sentence-pair classification.
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/albert.md
Removed resource duplicate
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Updated albert.md doc with reviewed changes
* Updated albert.md doc for ALBERT
* Update docs/source/en/model_doc/albert.md
Removed duplicates from updated docs/source/en/model_doc/albert.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/model_doc/albert.md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* try to stylify using ruff
* might need to remove these changes?
* use ruf format andruff check
* use isinstance instead of type comparision
* use # fmt: skip
* use # fmt: skip
* nits
* soem styling changes
* update ci job
* nits isinstance
* more files update
* nits
* more nits
* small nits
* check and format
* revert wrong changes
* actually use formatter instead of checker
* nits
* well docbuilder is overwriting this commit
* revert notebook changes
* try to nuke docbuilder
* style
* fix feature exrtaction test
* remve `indent-width = 4`
* fixup
* more nits
* update the ruff version that we use
* style
* nuke docbuilder styling
* leve the print for detected changes
* nits
* Remove file I/O
Co-authored-by: charliermarsh
<charlie.r.marsh@gmail.com>
* style
* nits
* revert notebook changes
* Add # fmt skip when possible
* Add # fmt skip when possible
* Fix
* More ` # fmt: skip` usage
* More ` # fmt: skip` usage
* More ` # fmt: skip` usage
* NIts
* more fixes
* fix tapas
* Another way to skip
* Recommended way
* Fix two more fiels
* Remove asynch
Remove asynch
---------
Co-authored-by: charliermarsh <charlie.r.marsh@gmail.com>
* translate model.md to chinese
* apply review suggestion
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update and reorder docs for chat templates
* Fix Mistral docstring
* Add section link and small fixes
* Remove unneeded line in Mistral example
* Add comment on saving memory
* Fix generation prompts linl
* Fix code block languages
* Initial commit of PatchTST model classes
Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
* Add PatchTSTForPretraining
* update to include classification
Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
* clean up auto files
* Add PatchTSTForPrediction
* Fix relative import
* Replace original PatchTSTEncoder with ChannelAttentionPatchTSTEncoder
* temporary adding absolute path + add PatchTSTForForecasting class
* Update base PatchTSTModel + Unittest
* Update ForecastHead to use the config class
* edit cv_random_masking, add mask to model output
* Update configuration_patchtst.py
* add masked_loss to the pretraining
* add PatchEmbeddings
* Update configuration_patchtst.py
* edit loss which considers mask in the pretraining
* remove patch_last option
* Add commits from internal repo
* Update ForecastHead
* Add model weight initilization + unittest
* Update PatchTST unittest to use local import
* PatchTST integration tests for pretraining and prediction
* Added PatchTSTForRegression + update unittest to include label generation
* Revert unrelated model test file
* Combine similar output classes
* update PredictionHead
* Update configuration_patchtst.py
* Add Revin
* small edit to PatchTSTModelOutputWithNoAttention
* Update modeling_patchtst.py
* Updating integration test for forecasting
* Fix unittest after class structure changed
* docstring updates
* change input_size to num_input_channels
* more formatting
* Remove some unused params
* Add a comment for pretrained models
* add channel_attention option
add channel_attention option and remove unused positional encoders.
* Update PatchTST models to use HF's MultiHeadAttention module
* Update paper + github urls
* Fix hidden_state return value
* Update integration test to use PatchTSTForForecasting
* Adding dataclass decorator for model output classes
* Run fixup script
* Rename model repos for integration test
* edit argument explanation
* change individual option to shared_projection
* style
* Rename integration test + import cleanup
* Fix outpu_hidden_states return value
* removed unused mode
* added std, mean and nops scaler
* add initial distributional loss for predition
* fix typo in docs
* add generate function
* formatting
* add num_parallel_samples
* Fix a typo
* copy weighted_average function, edit PredictionHead
* edit PredictionHead
* add distribution head to forecasting
* formatting
* Add generate function for forecasting
* Add generate function to prediction task
* formatting
* use argsort
* add past_observed_mask ordering
* fix arguments
* docs
* add back test_model_outputs_equivalence test
* formatting
* cleanup
* formatting
* use ACT2CLS
* formatting
* fix add_start_docstrings decorator
* add distribution head and generate function to regression task
add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput, PatchTSTForRegressionOutput.
* add distribution head and generate function to regression task
add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput, PatchTSTForRegressionOutput.
* fix typos
* add forecast_masking
* fixed tests
* use set_seed
* fix doc test
* formatting
* Update docs/source/en/model_doc/patchtst.md
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* better var names
* rename PatchTSTTranspose
* fix argument names and docs string
* remove compute_num_patches and unused class
* remove assert
* renamed to PatchTSTMasking
* use num_labels for classification
* use num_labels
* use default num_labels from super class
* move model_type after docstring
* renamed PatchTSTForMaskPretraining
* bs -> batch_size
* more review fixes
* use hidden_state
* rename encoder layer and block class
* remove commented seed_number
* edit docstring
* Add docstring
* formatting
* use past_observed_mask
* doc suggestion
* make fix-copies
* use Args:
* add docstring
* add docstring
* change some variable names and add PatchTST before some class names
* formatting
* fix argument types
* fix tests
* change x variable to patch_input
* format
* formatting
* fix-copies
* Update tests/models/patchtst/test_modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* move loss to forward
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/patchtst/modeling_patchtst.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* formatting
* fix a bug when pre_norm is set to True
* output_hidden_states is set to False as default
* set pre_norm=True as default
* format docstring
* format
* output_hidden_states is None by default
* add missing docs
* better var names
* docstring: remove default to False in output_hidden_states
* change labels name to target_values in regression task
* format
* fix tests
* change to forecast_mask_ratios and random_mask_ratio
* change mask names
* change future_values to target_values param in the prediction class
* remove nn.Sequential and make PatchTSTBatchNorm class
* black
* fix argument name for prediction
* add output_attentions option
* add output_attentions to PatchTSTEncoder
* formatting
* Add attention output option to all classes
* Remove PatchTSTEncoderBlock
* create PatchTSTEmbedding class
* use config in PatchTSTPatchify
* Use config in PatchTSTMasking class
* add channel_attn_weights
* Add PatchTSTScaler class
* add output_attentions arg to test function
* format
* Update doc with image patchtst.md
* fix-copies
* rename Forecast <-> Prediction
* change name of a few parameters to match with PatchTSMixer.
* Remove *ForForecasting class to match with other time series models.
* make style
* Remove PatchTSTForForecasting in the test
* remove PatchTSTForForecastingOutput class
* change test_forecast_head to test_prediction_head
* style
* fix docs
* fix tests
* change num_labels to num_targets
* Remove PatchTSTTranspose
* remove arguments in PatchTSTMeanScaler
* remove arguments in PatchTSTStdScaler
* add config as an argument to all the scaler classes
* reformat
* Add norm_eps for batchnorm and layernorm
* reformat.
* reformat
* edit docstring
* update docstring
* change variable name pooling to pooling_type
* fix output_hidden_states as tuple
* fix bug when calling PatchTSTBatchNorm
* change stride to patch_stride
* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder
* formatting
* initialize scalers with configs
* edit output_hidden_states
* style
* fix forecast_mask_patches doc string
---------
Co-authored-by: Gift Sinthong <gift.sinthong@ibm.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: Ngoc Diep Do <diiepy@gmail.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* only dir not even init
* init
* tokenizer removed and reference of codegen added
* modeling file updated a lot remaining app_rotary_emb
* conversion script done
* conversion script fixed, a lot of factoring done and most tests pass
* added token_clf and extractive_QA_head
* integration tests pass
* flash attn tests pass!
* config done
* more docs in modeling file
* some style fix
* style and others
* doc test error fix
* more doc fix
* some attention fixes
* most fixes
* style and other fixes
* docs fix and config
* doc fix
* some comments
* conversion script updated
* conversion script updated
* Revert "conversion script updated"
This reverts commit e92378c54084ec0747041b113083d1746ecb6c7f.
* final comments
* add Phi to language_modeling.md
* edit phi.md file
* rebase and fix
* removed phi-1.5 example
* changed model_type from 'phi'->'mixformer-sequential'
* small change
* small change
* revert \small change
* changed mixformer-sequential->phi
* small change
* added phi-1.5 example instead of phi-1
* doc test might pass now
* rebase and small change
* added the dropout layer
* more fixes
* modified .md file
* very very small doc change
* init commit
* attention arch done except rotary emb
* rotary emb done
* text encoder working
* outputs matching
* arch first pass done
* make commands done, tests and docs remaining
* all tests passed, only docs remaining
* docs done
* doc-builder fix
* convert script removed(not relevant)
* minor comments done
* added ckpt conversion script
* tokenizer done
* very minor fix of index.md 2
* mostly make fixup related
* all done except fe and rotary emb
* very small change
* removed unidecode dependency
* style changes
* tokenizer removed require_backends
* added require_inflect to tokenizer tests
* removed VOCAB_FILES in tokenizer test
* inflect dependency removed
* added rotary pos emb cache and simplified the apply method
* style
* little doc change
* more comments
* feature extractor added
* added processor
* auto-regressive config added
* added CLVPConditioningEncoder
* comments done except the test one
* weights added successfull(NOT tested)
* tokenizer fix with numbers
* generate outputs matching
* almost tests passing Integ tests not written
* Integ tests added
* major CUDA error fixed
* docs done
* rebase and multiple fixes
* fixed rebase overwrites
* generate code simplified and tests for AutoRegressive model added
* minor changes
* refectored gpt2 code in clvp file
* weights done and all code refactored
* mostly done except the fast_tokenizer
* doc test fix
* config file's doc fixes
* more config fix
* more comments
* tokenizer comments mostly done
* modeling file mostly refactored and can load modules
* ClvpEncoder tested
* ClvpDecoder, ClvpModel and ClvpForCausalLM tested
* integration and all tests passed
* more fixes
* docs almost done
* ckpt conversion refectored
* style and some failing tests fix
* comments
* temporary output fix but test_assisted_decoding_matches_greedy_search test fails
* majority changes done
* use_cache outputs same now! Along with the asisted_greedy_decoding test fix
* more comments
* more comments
* prepare_inputs_for_generation fixed and _prepare_model_inputs added
* style fix
* clvp.md change
* moved clvpconditionalencoder norms
* add model to new index
* added tokenizer input_ids_with_special_tokens
* small fix
* config mostly done
* added config-tester and changed conversion script
* more comments
* comments
* style fix
* some comments
* tokenizer changed back to prev state
* small commnets
* added output hidden states for the main model
* style fix
* comments
* small change
* revert small change
* .
* Update clvp.md
* Update test_modeling_clvp.py
* :)
* some minor change
* new fixes
* remove to_dict from FE
* Add index.md for tukish language
* Fix index.md (huggingface/transformers#27088)
* Add 'tr' to additional files
* Update docs/source/tr/_toctree.yml
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update index.md
---------
Co-authored-by: Mert Yanık <mert.yanik@lcwaikiki.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Fix error in convert_openai_to_hf.py: "_download() missing 1 required positional argument: root"
* Fix error in convert_openai_to_hf.py: "TypeError: byte indices must be integers or slices, not str"
* Fix decoder_attention_heads value in convert_openai_to_hf.py.
Correct the assignment for `decoder_attention_heads` in the conversion script for the Whisper model.
* Black reformat convert_openai_to_hf.py file.
* Fix Whisper model configuration defaults (for Tiny).
- Correct encoder/decoder layers and attention heads count.
- Update model width (`d_model`) to 384.
* Add docstring to the convert_openai_to_hf.py script with a doctest
* Add shebang and +x permission to the convert_openai_to_hf.py
* convert_openai_to_hf.py: reuse the read model_bytes in the _download() function
* Move convert_openai_to_hf.py doctest example to whisper.md
* whisper.md: Add an inference example to the Conversion section.
* whisper.md: remove `model.config.forced_decoder_ids` from examples (deprecated)
* whisper.md: Remove "## Format Conversion" section; not used by users
* whisper.md: Use librispeech_asr_dummy dataset and load_dataset()
I'm adding accelerate as one of the libraries to install because otherwise when running the Trainer, the model errorr out with the error.
ImportError: Using the `Trainer` with `PyTorch` requires `accelerate>=0.20.1`: Please run `pip install transformers[torch]` or `pip install accelerate -U`
Further context:
1. I've tried this across different environments so I believe that the environment is not the issue.
2. I had the latest transformers library version running.
3. Typically even after install accelerate and import it, it wouldn't resolve the issue until I restart the notebook and try again.
* first batch of structure improvements for model_docs
* second batch of structure improvements for model_docs
* more structure improvements for model_docs
* more structure improvements for model_docs
* structure improvements for cv model_docs
* more structural refactoring
* addressed feedback about image processors
* Add type annotations to TFConvNextDropPath
* Use tf.debugging.assert_equal for TFConvNextEmbeddings shape check
* Add TensorFlow implementation of ConvNeXTV2
* check_docstrings: add TFConvNextV2Model to exclusions
TFConvNextV2Model and TFConvNextV2ForImageClassification have docstrings
which are equivalent to their PyTorch cousins, but a parsing issue prevents them
from passing the test.
Adding exclusions for these two classes as discussed in #25558.
* docs(zh): translate tflite.md
* docs(zh): add space around links
* Update docs/source/zh/tflite.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Add support for loading GPTQ models on CPU
Right now, we can only load the GPTQ Quantized model on the CUDA
device. The attribute `gptq_supports_cpu` checks if the current
auto_gptq version is the one which has the cpu support for the
model or not.
The larger variants of the model are hard to load/run/trace on
the GPU and that's the rationale behind adding this attribute.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
* Update quantization.md
* Update quantization.md
* Update quantization.md
* add
* add
* add
* Add deepspeed.md
* Add
* add
* Update docs/source/ja/main_classes/callback.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/main_classes/output.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/main_classes/pipelines.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/main_classes/processors.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/main_classes/processors.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/main_classes/text_generation.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ja/main_classes/processors.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update logging.md
* Update toctree.yml
* Update docs/source/ja/main_classes/deepspeed.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Add suggesitons
* m
* Update docs/source/ja/main_classes/trainer.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update toctree.yml
* Update Quantization.md
* Update docs/source/ja/_toctree.yml
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update toctree.yml
* Update docs/source/en/main_classes/deepspeed.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/main_classes/deepspeed.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs(zh): translate custom_models.md
* minor fix in customer_models
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* add `MaskGenerationPipeline` in docs
* Update __init__.py
* fix repo consistency and clarify docstring
* add on check docstirngs
* actually we do have a tf sam
* oops
* initial edits
* improvements for clarity and flow
* improvements for clarity and flow, removed the repetead section
* removed two docs that had no content
* Revert "removed two docs that had no content"
This reverts commit e98fa2fa0d.
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* feedback addressed
* more feedback addressed
* feedback addressed
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* adds agnostic decorators and availability fns
* renaming decorators and fixing imports
* updating some representative example tests
bloom, opt, and reformer for now
* wip device agnostic functions
* lru cache to device checking functions
* adds `TRANSFORMERS_TEST_DEVICE_SPEC`
if present, imports the target file and updates device to function
mappings
* comments `TRANSFORMERS_TEST_DEVICE_SPEC` code
* extra checks on device name
* `make style; make quality`
* updates default functions for agnostic calls
* applies suggestions from review
* adds `is_torch_available` guard
* Add spec file to docs, rename function dispatch names to backend_*
* add backend import to docs example for spec file
* change instances of to
* Move register backend to before device check as per @statelesshz changes
* make style
* make opt test require fp16 to run
---------
Co-authored-by: arsalanu <arsalanu@graphcore.ai>
Co-authored-by: arsalanu <hzji210@gmail.com>
* update translation of pipeline_tutorial and preprocessing(Version1.0)
* update translation of pipeline_tutorial and preprocessing(Version2.0)
* update translation docs
* update to fix problems mentioned in review
---------
Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
* first raw commit
* still POC
* tentative convert script
* almost working speech encoder conversion scripts
* intermediate code for encoder/decoders
* add modeling code
* first version of speech encoder
* make style
* add new adapter layer architecture
* add adapter block
* add first tentative config
* add working speech encoder conversion
* base model convert works now
* make style
* remove unnecessary classes
* remove unecessary functions
* add modeling code speech encoder
* rework logics
* forward pass of sub components work
* add modeling codes
* some config modifs and modeling code modifs
* save WIP
* new edits
* same output speech encoder
* correct attention mask
* correct attention mask
* fix generation
* new generation logics
* erase comments
* make style
* fix typo
* add some descriptions
* new state
* clean imports
* add tests
* make style
* make beam search and num_return_sequences>1 works
* correct edge case issue
* correct SeamlessM4TConformerSamePadLayer copied from
* replace ACT2FN relu by nn.relu
* remove unecessary return variable
* move back a class
* change name conformer_attention_mask ->conv_attention_mask
* better nit code
* add some Copied from statements
* small nits
* small nit in dict.get
* rename t2u model -> conditionalgeneration
* ongoing refactoring of structure
* update models architecture
* remove SeamlessM4TMultiModal classes
* add tests
* adapt tests
* some non-working code for vocoder
* add seamlessM4T vocoder
* remove buggy line
* fix some hifigan related bugs
* remove hifigan specifc config
* change
* add WIP tokenization
* add seamlessM4T working tokenzier
* update tokenization
* add tentative feature extractor
* Update converting script
* update working FE
* refactor input_values -> input_features
* update FE
* changes in generation, tokenizer and modeling
* make style and add t2u_decoder_input_ids
* add intermediate outputs for ToSpeech models
* add vocoder to speech models
* update valueerror
* update FE with languages
* add vocoder convert
* update config docstrings and names
* update generation code and configuration
* remove todos and update config.pad_token_id to generation_config.pad_token_id
* move block vocoder
* remove unecessary code and uniformize tospeech code
* add feature extractor import
* make style and fix some copies from
* correct consistency + make fix-copies
* add processor code
* remove comments
* add fast tokenizer support
* correct pad_token_id in M4TModel
* correct config
* update tests and codes + make style
* make some suggested correstion - correct comments and change naming
* rename some attributes
* rename some attributes
* remove unecessary sequential
* remove option to use dur predictor
* nit
* refactor hifigan
* replace normalize_mean and normalize_var with do_normalize + save lang ids to generation config
* add tests
* change tgt_lang logic
* update generation ToSpeech
* add support import SeamlessM4TProcessor
* fix generate
* make tests
* update integration tests, add option to only return text and update tokenizer fast
* fix wrong function call
* update import and convert script
* update integration tests + update repo id
* correct paths and add first test
* update how new attention masks are computed
* update tests
* take first care of batching in vocoder code
* add batching with the vocoder
* add waveform lengths to model outputs
* make style
* add generate kwargs + forward kwargs of M4TModel
* add docstrings forward methods
* reformate docstrings
* add docstrings t2u model
* add another round of modeling docstrings + reformate speaker_id -> spkr_id
* make style
* fix check_repo
* make style
* add seamlessm4t to toctree
* correct check_config_attributes
* write config docstrings + some modifs
* make style
* add docstrings tokenizer
* add docstrings to processor, fe and tokenizers
* make style
* write first version of model docs
* fix FE + correct FE test
* fix tokenizer + add correct integration tests
* fix most tokenization tests
* make style
* correct most processor test
* add generation tests and fix num_return_sequences > 1
* correct integration tests -still one left
* make style
* correct position embedding
* change numbeams to 1
* refactor some modeling code and correct one test
* make style
* correct typo
* refactor intermediate fnn
* refactor feedforward conformer
* make style
* remove comments
* make style
* fix tokenizer tests
* make style
* correct processor tests
* make style
* correct S2TT integration
* Apply suggestions from Sanchit code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* correct typo
* replace torch.nn->nn + make style
* change Output naming (waveforms -> waveform) and ordering
* nit renaming and formating
* remove return None when not necessary
* refactor SeamlessM4TConformerFeedForward
* nit typo
* remove almost copied from comments
* add a copied from comment and remove an unecessary dropout
* remove inputs_embeds from speechencoder
* remove backward compatibiliy function
* reformate class docstrings for a few components
* remove unecessary methods
* split over 2 lines smthg hard to read
* make style
* replace two steps offset by one step as suggested
* nice typo
* move warnings
* remove useless lines from processor
* make generation non-standard test more robusts
* remove torch.inference_mode from tests
* split integration tests
* enrich md
* rename control_symbol_vocoder_offset->vocoder_offset
* clean convert file
* remove tgt_lang and src_lang from FE
* change generate docstring of ToText models
* update generate docstring of tospeech models
* unify how to deal withtext_decoder_input_ids
* add default spkr_id
* unify tgt_lang for t2u_model
* simplify tgt_lang verification
* remove a todo
* change config docstring
* make style
* simplify t2u_tgt_lang_id
* make style
* enrich/correct comments
* enrich .md
* correct typo in docstrings
* add torchaudio dependency
* update tokenizer
* make style and fix copies
* modify SeamlessM4TConverter with new tokenizer behaviour
* make style
* correct small typo docs
* fix import
* update docs and add requirement to tests
* add convert_fairseq2_to_hf in utils/not_doctested.txt
* update FE
* fix imports and make style
* remove torchaudio in FE test
* add seamless_m4t.md to utils/not_doctested.txt
* nits and change the way docstring dataset is loaded
* move checkpoints from ylacombe/ to facebook/ orga
* refactor warning/error to be in the 119 line width limit
* round overly precised floats
* add stereo audio behaviour
* refactor .md and make style
* enrich docs with more precised architecture description
* readd undocumented models
* make fix-copies
* apply some suggestions
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* correct bug from previous commit
* refactor a parameter allowing to clean the code + some small nits
* clean tokenizer
* make style and fix
* make style
* clean tokenizers arguments
* add precisions for some tests
* move docs from not_tested to slow
* modify tokenizer according to last comments
* add copied from statements in tests
* correct convert script
* correct parameter docstring style
* correct tokenization
* correct multi gpus
* make style
* clean modeling code
* make style
* add copied from statements
* add copied statements
* add support with ASR pipeline
* remove file added inadvertently
* fix docstrings seamlessM4TModel
* add seamlessM4TConfig to OBJECTS_TO_IGNORE due of unconventional markdown
* add seamlessm4t to assisted generation ignored models
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix set_transform link
* Update docs/source/en/preprocessing.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* use doc-builder sintax
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* initial commit
* add processor, add fuyu naming
* add draft processor
* fix processor
* remove dropout to fix loading of weights
* add image processing fixes from Pedro
* fix
* fix processor
* add basic processing fuyu test
* add documentation and TODO
* address comments, add tests, add doc
* replace assert with torch asserts
* add Mixins and fix tests
* clean imports
* add model tester, clean imports
* fix embedding test
* add updated tests from pre-release model
* Processor: return input_ids used for inference
* separate processing and model tests
* relax test tolerance for embeddings
* add test for logit comparison
* make sure fuyu image processor is imported in the init
* fix formattingh
* more formatting issues
* and more
* fixups
* remove some stuff
* nits
* update init
* remove the fuyu file
* Update integration test with release model
* Update conversion script.
The projection is not used, as confirmed by the authors.
* improve geenration
* Remove duplicate function
* Trickle down patches to model call
* processing fuyu updates
* remove things
* fix prepare_inputs_for_generation to fix generate()
* remove model_input
* update
* add generation tests
* nits
* draft leverage automodel and autoconfig
* nits
* fix dtype patch
* address comments, update READMEs and doc, include tests
* add working processing test, remove refs to subsequences
* add tests, remove Sequence classification
* processing
* update
* update the conversion script
* more processing cleanup
* safe import
* take out ModelTesterMixin for early release
* more cl;eanup
* more cleanup
* more cleanup
* and more
* register a buffer
* nits
* add postprocessing of generate output
* nits
* updates
* add one working test
* fix test
* make fixup works
* fixup
* Arthur's updates
* nits
* update
* update
* fix processor
* update tests
* passe more fixups
* fix
* nits
* don't import torch
* skip fuyu config for now
* fixup done
* fixup
* update
* oups
* nits
* Use input embeddings
* no buffer
* update
* styling processing fuyu
* fix test
* update licence
* protect torch import
* fixup and update not doctested
* kwargs should be passed
* udpates
* update the impofixuprts in the test
* protect import
* protecting imports
* protect imports in type checking
* add testing decorators
* protect top level import structure
* fix typo
* fix check init
* move requires_backend to functions
* Imports
* Protect types
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
* Chore: Typo fixed in multiple files of docs/source/en/model_doc
* Update docs/source/en/model_doc/nllb-moe.md
Co-authored-by: Aryan V S <avs050602@gmail.com>
---------
Co-authored-by: Aryan V S <avs050602@gmail.com>
* docs: feat: model resources for CLIP
* fix: resolve suggestion
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix: resolve suggestion
* fix: resolve suggestion
* fix: resolve suggestion
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix: resolve suggestion
* fix: resolve suggestions
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* llm prompting guide
* updated code examples
* an attempt to fix the code example tests
* set seed in examples
* added a doctest comment
* added einops to the doc_test_job
* string formatting
* string formatting, again
* added the toc to slow_documentation_tests.txt
* minor list fix
* string formatting + pipe renamed
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* replaced max_length with max_new_tokens and updated the outputs to match
* minor formatting fix
* removed einops from circleci config
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <hi@lysand.re>
* removed einops and trust_remote_code parameter
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
* translate accelerate page
* Update docs/source/zh/accelerate.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix typos in idefics.md
Two typos found in reviewing this documentation.
1) max_new_tokens=4, is not sufficient to generate "Vegetables" as indicated - you will get only "Veget". (incidentally - some mention of how to select this value might be useful as it seems to change in each example)
2) inputs = processor(prompts, return_tensors="pt").to(device) as inputs need to be on the same device (as they are in all other examples on the page)
* Update idefics.md
Change device to cuda explicitly to match other examples
* add FA-2 support for mistral
* fixup
* add sliding windows
* fixing few nits
* v1 slicing cache - logits do not match
* add comment
* fix bugs
* more mem efficient
* add warning once
* add warning once
* oops
* fixup
* more comments
* copy
* add safety checker
* fixup
* Update src/transformers/models/mistral/modeling_mistral.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* copied from
* up
* raise when padding side is right
* fixup
* add doc + few minor changes
* fixup
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* start working on next chapter
* finish testing
* Update docs/source/de/testing.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/de/testing.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/de/testing.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* initial
* toctree
* add tf model
* run scripts
* peft
* llm and agents
* Update docs/source/de/peft.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/de/peft.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/de/peft.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/de/run_scripts.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/de/run_scripts.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/de/transformers_agents.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/de/transformers_agents.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Put tokenizer methods in the right alphabetical order in the docs
* Quick tweak to ConversationalPipeline
* Typo fixes in the developer doc
* make fixup
* add Bros boilerplate
* copy and pasted modeling_bros.py from official Bros repo
* update copyright of bros files
* copy tokenization_bros.py from official repo and update import path
* copy tokenization_bros_fast.py from official repo and update import path
* copy configuration_bros.py from official repo and update import path
* remove trailing period in copyright line
* copy and paste bros/__init__.py from official repo
* save formatting
* remove unused unnecessary pe_type argument - using only crel type
* resolve import issue
* remove unused model classes
* remove unnecessary tests
* remove unused classes
* fix original code's bug - layer_module's argument order
* clean up modeling auto
* add bbox to prepare_config_and_inputs
* set temporary value to hidden_size (32 is too low because of the of the
Bros' positional embedding)
* remove decoder test, update create_and_check* input arguemnts
* add missing variable to model tests
* do make fixup
* update bros.mdx
* add boilerate plate for no_head inference test
* update BROS_PRETRAINED_MODEL_ARCHIVE_LIST (add naver-clova-ocr prefix)
* add prepare_bros_batch_inputs function
* update modeling_common to add bbox inputs in Bros Model Test
* remove unnecessary model inference
* add test case
* add model_doc
* add test case for token_classification
* apply fixup
* update modeling code
* update BrosForTokenClassification loss calculation logic
* revert logits preprocessing logic to make sure logits have original shape
* - update class name
* - add BrosSpadeOutput
- update BrosConfig arguments
* add boilerate plate for no_head inference test
* add prepare_bros_batch_inputs function
* add test case
* add test case for token_classification
* update modeling code
* update BrosForTokenClassification loss calculation logic
* revert logits preprocessing logic to make sure logits have original shape
* apply masking on the fly
* add BrosSpadeForTokenLinking
* update class name
put docstring to the beginning of the file
* separate the logits calculation logic and loss calculation logic
* update logic for loss calculation so that logits shape doesn't change
when return
* update typo
* update prepare_config_and_inputs
* update dummy node initialization
* update last_hidden_states getting logic to consider when return_dict is False
* update box first token mask param
* bugfix: remove random attention mask generation
* update keys to ignore on load missing
* run make style and quality
* apply make style and quality of other codes
* update box_first_token_mask to bool type
* update index.md
* apply make style and quality
* apply make fix-copies
* pass check_repo
* update bros model doc
* docstring bugfix fix
* add checkpoint for doc, tokenizer for doc
* Update README.md
* Update docs/source/en/model_doc/bros.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update bros.md
* Update src/transformers/__init__.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/model_doc/bros.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* apply suggestions from code review
* apply suggestions from code review
* revert test_processor_markuplm.py
* Update test_processor_markuplm.py
* apply suggestions from code review
* apply suggestions from code review
* apply suggestions from code review
* update BrosSpadeELForTokenClassification head name to entity linker
* add doc string for config params
* update class, var names to more explicit and apply suggestions from code review
* remove unnecessary keys to ignore
* update relation extractor to be initialized with config
* add bros processor
* apply make style and quality
* update bros.md
* remove bros tokenizer, add bros processor that wraps bert tokenizer
* revert change
* apply make fix-copies
* update processor code, update itc -> initial token, stc -> subsequent token
* add type hint
* remove unnecessary condition branches in embedding forward
* fix auto tokenizer fail
* update docstring for each classes
* update bbox input dimension as standard 2 points and convert them to 4
points in forward pass
* update bros docs
* apply suggestions from code review : update Bros -> BROS in bros.md
* 1. box prefix var -> bbox
2. update variable names to be more explicit
* replace einsum with torch matmul
* apply style and quality
* remove unused argument
* remove unused arguments
* update docstrings
* apply suggestions from code review: add BrosBboxEmbeddings, replace
einsum with classical matrix operations
* revert einsum update
* update bros processor
* apply suggestions from code review
* add conversion script for bros
* Apply suggestions from code review
* fix readme
* apply fix-copies
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* First commit while I figure this out
* make fixup
* Remove unused method
* Store prompt attrib
* Fix prompt argument for tests
* Make same changes in fast tokenizer
* Remove global prompts from fast tokenizer too
* stash commit
* stash commit
* Migrate PromptConfig to its True Final Location
* Replace Conversation entirely with the new class
* Import/dependency fixes
* Import/dependency fixes
* Change format for lots of default prompts
* More default prompt fixups
* Revert llama old methods so we can compare
* Fix some default configs
* Fix some default configs
* Fix misspelled kwarg
* Fixes for Blenderbot
* make fixup
* little rebase cleanup
* Add basic documentation
* Quick doc fix
* Truncate docstring for now
* Add handling for the case when messages is a single string
* Quick llama merges
* Update conversational pipeline and tests
* Add a couple of legacy properties for backward compatibility
* More legacy handling
* Add docstring for build_conversation_input_ids
* Restructure PromptConfig
* Let's start T E M P L A T I N G
* Refactor all default configs to use templates instead
* Revert changes to the special token properties since we don't need them anymore
* More class templates
* Make the sandbox even sandier
* Everything replaced with pure templating
* Remove docs for PromptConfig
* Add testing and optional requirement boilerplate
* Fix imports and make fixup
* Fix LLaMA tests and add Conversation docstring
* Finally get LLaMA working with the template system
* Finally get LLaMA working with the template system
* make fixup
* make fixup
* fmt-off for the long lists of test tokens
* Rename method to apply_chat_template for now
* Start on documentation
* Make chat_template a property that reads through to the default if it's not set
* Expand docs
* Expand chat templating doc some more
* trim/lstrip blocks by default and update doc
* Few doc tweaks
* rebase cleanup
* Clarify docstring
* rebase cleanup
* rebase cleanup
* make fixup
* Quick doc edit
* Reformat the standard template to match ChatML
* Re-add PEFT check
* Update docs/source/en/chat_templating.md
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add apply_chat_template to the tokenizer doc
* make fixup
* Add doc links
* Fix chat links
* Fix chat links
* Explain system messages in the doc
* Add chat template test
* Proper save-loading for chat template attribute
* Add test skips for layout models
* Remove _build_conversation_input_ids, add default_chat_template to code_llama
* Make sure all LLaMA models are using the latest template
* Remove default_system_prompt block in code_llama because it has no default prompt
* Update ConversationPipeline preprocess
* Add correct #Copied from links to the default_chat_templates
* Remove unneeded type checking line
* Add a dummy mark_processsed method
* Reorganize Conversation to have **deprecated_kwargs
* Update chat_templating.md
* Quick fix to LLAMA tests
* Small doc tweaks
* Add proper docstrings and "copied from" statements to all default chat templates
* Merge use_default_system_prompt support for code_llama too
* Improve clarity around self.chat_template
* Docstring fix
* Fix blenderbot default template
* More doctest fix
* Break out some tokenizer kwargs
* Update doc to explain default templates
* Quick tweaks to tokenizer args
* Cleanups for tokenizer args
* Add note about cacheing
* Quick tweak to the chat-templating doc
* Update the LLaMA template with error checking and correct system message embedding
* make fixup
* make fixup
* add requires_jinja
* Cleanup to expected output formatting
* Add cacheing
* Fix typo in llama default template
* Update LLaMA tests
* Update documentation
* Improved legacy handling in the Conversation class
* Update Jinja template with proper error handling
* Quick bugfix
* Proper exception raising
* Change cacheing behaviour so it doesn't try to pickle an entire Jinja env
* make fixup
* rebase cleanup
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* enable optuna multi-objectives feature
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update hpo doc
* update docstring
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* extend direction to List[str] type
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* intiial commit
* updates
* nits
* update conversion script
* update conversion script
* use path to load
* add tips etc
* some modeling logic
* modeling update
* more nits
* nits
* normal layer norm
* update config and doc
* nits
* update doc remove unused
* update
* fix inits and stuff
* fixup
* revert wrong changes
* updates
* more nits
* add default config values to the configuration file
* fixup happy
* update
* 2 tests left
* update readmes
* more nits
* slow test and more documentation
* update readme
* fix licences
* styling
* use fast if possible when saving tokenizer
* remove todo
* remove tokenization tests
* small last nits
* Apply suggestions from code review
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* nits to skip the timout doctest
* fix integration test
* fix test
* update eos token
* update to allow fast tokenization
* styling
* fix codeLlama as well for the update post processor
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add more copied from statements
* update
* doc passes doctest
* remove `# final layer norm?`
* change docstring prompot
* update
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* don't doctest the conversion script as it requires more packages
* don't init a model in the config
* oups
* fix doctest
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Added HerBERT to README.md
* Update README.md to contain HerBERT (#26016)
* Resolved#26016: Updated READMEs and index.md to contain Herbert
Updated READMEs and ran make fix-copies
* docs: feat: model resources for llama
* fix: resolve suggestion
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
* Add proper Falcon docs and conversion script
* Autodetect the decoder architecture instead of using an arg
* Update docs now that we can autodetect
* Fix doc error
* Add doc to toctree
* Quick doc update
* Modify single-GPU efficient training doc with now-available adamw_bnb_8bit optimizer
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* add a warning=True tip to the Llama2 doc
* code llama needs a tip too
* doc nit
* build PR doc
* doc nits
Co-authored-by: Lysandre <lysandre@huggingface.co>
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* add all
* Revert "Delete .github directory"
This reverts commit 9b0ff7b052e2b20b629a26fb13606b78a42944d1.
* make conversion script backward compatible
* fixup
* more styling
* copy to llama changes
* fix repo consistency
* nits
* document correct classes
* updates
* more fixes
* nits
* update auto mappings
* add readmes
* smallupdates
* llama-code replace with llama_code
* make fixup
* updates to the testsing suite
* fix fast nits
* more small fixes
* fix decode
* fix template processing
* properly reset the normalizer
* nits processor
* tokenization tests pass
* styling
* last tests
* additional nits
* one test is left
* nits
Co-authored-by faabian <faabian@users.noreply.github.com>
* update failing test
* fixup
* remove decode infilling users should handle it on their onw after generation, padding can be a problem
* update
* make test slow and more meaningfull
* fixup
* doc update
* fixup
* Apply suggestions from code review
* add kwargs doc
* tokenizer requires `requires_backend`
* type requires_backends
* CodeLlama instead of LlamaCode
* more name cahnges
* nits
* make doctests happy
* small pipeline nits
* last nit
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* update
* add codellama to toctree
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add FlaxClipTextModelWithProjection
This is necessary to support the Flax port of Stable Diffusion XL: fb6d705fb5/text_encoder_2/config.json (L3)
Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: Juan Acevedo <juancevedo@gmail.com>
* Use FlaxCLIPTextModelOutput
* make fix-copies again
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Use `return_dict` for consistency with other uses.
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Fix docstring example.
* Add new model to FlaxCLIPTextModelTest
* Add to IGNORE_NON_AUTO_CONFIGURED list
* Fix naming convention.
---------
Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: Juan Acevedo <juancevedo@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* docs: feat: model resources for llama2
Co-authored-by: Woojun Jung <hello_984@naver.com>
* fix: add description for dpo and rearrange posts
* docs: feat: add llama2 notebook resources
* style: one liners for each resource
Co-Authored-By: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-Authored-By: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Fix typo
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Woojun Jung <hello_984@naver.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Adds `TRANSFORMERS_TEST_BACKEND`
Allows specifying arbitrary additional import following first `import torch`.
This is useful for some custom backends, that will require additional imports to trigger backend registration with upstream torch.
See https://github.com/pytorch/benchmark/pull/1805 for a similar change in `torchbench`.
* Update src/transformers/testing_utils.py
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Adds real backend example to documentation
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* init commit
* config updated also some modeling
* Processor and Model config combined
* extraction pipeline(upto before spectogram & mel_conditioner) added but not properly tested
* model loading successful!
* feature extractor done!
* FE can now be called from HF
* postprocessing added in fe file
* same as prev commit
* Pop2PianoConfig doc done
* cfg docs slightly changed
* fe docs done
* batched
* batched working!
* temp
* v1
* checking
* trying to go with generate
* with generate and model tests passed
* before rebasing
* .
* tests done docs done remaining others & nits
* nits
* LogMelSpectogram shifted to FeatureExtractor
* is_tf rmeoved from pop2piano/init
* import solved
* tokenization tests added
* minor fixed regarding modeling_pop2piano
* tokenizer changed to only return midi_object and other changes
* Updated paper abstract(Camera-ready version) (#2)
* more comments and nits
* ruff changes
* code quality fix
* sg comments
* t5 change added and rebased
* comments except batching
* batching done
* comments
* small doc fix
* example removed from modeling
* ckpt
* forward it compatible with fe and generation done
* comments
* comments
* code-quality fix(maybe)
* ckpts changed
* doc file changed from mdx to md
* test fixes
* tokenizer test fix
* changes
* nits done main changes remaining
* code modified
* Pop2PianoProcessor added with tests
* other comments
* added Pop2PianoProcessor to dummy_objects
* added require_onnx to modeling file
* changes
* update .md file
* remove extra line in index.md
* back to the main index
* added pop2piano to index
* Added tokenizer.__call__ with valid args and batch_decode and aligned the processor part too
* changes
* added return types to 2 tokenizer methods
* the PR build test might work now
* added backends
* PR build fix
* vocab added
* comments
* refactored vocab into 1 file
* added conversion script
* comments
* essentia version changed in .md
* comments
* more tokenizer tests added
* minor fix
* tests extended for outputs acc check
* small fix
---------
Co-authored-by: Jongho Choi <sweetcocoa@snu.ac.kr>
* a draft version
* v2 integration
* fix
* make it more generic and works for IA3
* add set adapter and multiple adapters support
* fixup
* adapt a bit
* oops
* oops
* oops
* adapt more
* fix
* add more refactor
* now works with model class
* change it to instance method as it causes issues with `jit`.
* add CR
* change method name
* add `add_adapter` method
* clean up
* Update src/transformers/adapters/peft_mixin.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add moe utils
* fixup
* Update src/transformers/adapters/peft_mixin.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* adapt
* oops
* fixup
* add is_peft_available
* remove `requires_backend`
* trainer compatibility
* fixup + docstring
* more details
* trigger CI
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
* fixup + is_main_process
* added `save_peft_format` in save_pretrained
* up
* fix nits here and there
* nits here and there.
* docs
* revert `encoding="utf-8"`
* comment
* added slow tests before the PEFT release.
* fixup and nits
* let's be on the safe zone
* added more comments
* v1 docs
* add remaining docs
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* move to `lib_integrations`
* fixup
* this time fixup
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* address final comments
* refactor to use `token`
* add PEFT to DockerFile for slow tests.
* added pipeline support.
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* added more details about flash attention
* correct and add more details
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* few modifs
* more details
* up
* Apply suggestions from code review
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
* adapt from suggestion
* Apply suggestions from code review
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
* trigger CI
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix nits and copies
* add new section
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
* Suggestions on Pipeline_webserver
docs: reorder the warning tip for pseudo-code
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/ko/pipeline_webserver.md
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
---------
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* add AutoModelForTextToSpeech class
* add TTS pipeline and tessting
* add docstrings to text_to_speech pipeline
* fix torch dependency
* corrector 'processor is None' case in Pipeline
* correct repo id
* modify text-to-speech -> text-to-audio
* remove processor
* rename text_to_speech pipelines files to text_audio
* add textToWaveform and textToSpectrogram instead of textToAudio classes
* update TTS pipeline to the bare minimum
* update tests TTS pipeline
* make style and erase useless import torch in TTS pipeline tests
* modify how to check if generate or forward in TTS pipeline
* remove unnecessary extra new lines
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* refactor input_texts -> text_inputs
* correct docstrings of TTS.__call__
* correct the shape of generated waveform
* take care of Bark tokenizer special case
* correct run_pipeline_test TTS
* make style
* update TTS docstrings
* address Sylvain nit refactors
* make style
* refactor into one liners
* correct squeeze
* correct way to test if forward or generate
* Update output audio waveform shape
* make style
* correct import
* modify how the TTS pipeline test if a model can generate
* align shape output of TTS pipeline with consistent shape
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Adds `TRANSFORMERS_TEST_DEVICE`
Mirrors the same API in the diffusers library. Useful in transformers
too.
* replace backend checking with trying `torch.device`
* Adds better error message for unknown test devices
* `make style`
* adds documentation showing `TRANSFORMERS_TEST_DEVICE` usage.
* added benchmarks for compile
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* added more models
* added more models fr
* added visualizations
* minor fix
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/perf_torch_compile.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Added links to models and put charts side by side
* Added batch comparisons
* Added more comparisons
* Fix table
* Added link to wheel
* Update perf_torch_compile.md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* clearer explanation on how things works under the hood.
* Update docs/source/en/main_classes/quantization.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update docs/source/en/main_classes/quantization.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add `load_in_4bit` in `from_pretrained`
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Initial addition of t5forsequenceclassification
* Adding imports and adding tests
* Formatting
* Running make fix-copies
* Adding mt5forseq
* Formatting
* run make fix-copies
* Adding to docs
* Add model_parallel
* Fix bug
* Fix
* Remove TODO
* Fixing tests for T5ForSequenceClassification
* Undo changes to dependency_versions_table.py
* Change classification head to work with T5Config directly
* Change seq length to let tests pass
* PR comments for formatting
* Formatting
* Initial addition of UMT5ForSequenceClassification
* Adding to inits and formatting
* run make fix-copies
* Add doc for UMT5ForSeqClass
* Update UMT5 config
* Fix docs
* Skip torch fx test for SequenceClassification
* Formatting
* Add skip to UMT5 tests as well
* Fix umt5 tests
* Running make fix-copies
* PR comments
* Fix for change to sentence_representation
* Rename seq_len to hidden_size since that's what it is
* Use base_model to follow format of the rest of the library
* Update docs
* Extract the decoder_input_ids changes and make one liner
* Make one-liner
* pull and push updates
* add docs
* fix modeling
* Add and run test
* make copies
* add task
* fix tests and fix small issues
* Checks on a Pull Request
* fix docs
* add desc pvt.md
* first pass at the single gpu doc
* overview: improved clarity and navigation
* WIP
* updated intro and deepspeed sections
* improved torch.compile section
* more improvements
* minor improvements
* make style
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* feedback addressed
* mdx -> md
* link fix
* feedback addressed
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Resolve typo in check_repo.py
* Specify encoding when opening modeling files
* Deprecate the OpenLlama architecture
* Add disclaimer pointing to Llama
I'm open to different wordings here
* Match the capitalisation of LLaMA
* Update supported Python and PyTorch versions in readme
* Update Python, etc. versions in non-English readmes
These were more out of date than in the English readme. This
updates all the versions the readmes claim the repository is tested
with to the same versions stated in the English readme.
Those versions are current at least in the case of the Python and
PyTorch versions (and less out of date for the others).
* Propagate trailing whitespace fix to model list
This runs "make fix-copies". The only change is the removal of
whitespace. No actual information or wording is changed.
* Update tested TensorFlow to 2.6 in all readmes
Per pinning in setup.py
Unlike Python and PyTorch, the minimum supported TensorFlow version
has not very recently changed, but old versions were listed in all
READMEs.
* add llama
* add other readmes
* update padding id in readme
* add link to paper
* fix paths and tokenizer
* more nits
* styling
* fit operation in 2 lines when possible
* nits
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add form
* update reademe
* update readme, we don't have a default pad token
* update test and tokenization
* LLaMA instead of Llama
* nits
* add expected text
* add greeedy output
* styling
* Update src/transformers/models/llama/modeling_llama.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* sequential device map
* skip relevant changes
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* first raw version of the bark integration
* working code on small models with single run
* add converting script from suno weights 2 hf
* many changes
* correct past_kv output
* working implementation for inference
* update the converting script according to the architecture changes
* add a working end-to-end inference code
* remove some comments and make small changes
* remove unecessary comment
* add docstrings and ensure no unecessary intermediary output during audio generation
* remove done TODOs
* make style + add config docstrings
* modification for batch inference support on the whole model
* add details to .generation_audio method
* add copyright
* convert EncodecModel from original library to transformers implementation
* add two class in order to facilitate model and sub-models loading from the hub
* add support of loading the whole model
* add BarkProcessor
* correct modeling according to processor output
* Add proper __init__ and auto support
* Add up-to-date copyright/license message
* add relative import instead of absolute
* cleaner head_dim computation
* small comment removal or changes
* more verbose LayerNorm init method
* specify eps for clearer comprehension
* more verbose variable naming in the MLP module
* remove unecessary BarkBlock parameter
* clearer code in the forward pass of the BarkBlock
* remove _initialize_modules method for cleaner code
* Remove unnecessary methods from sub-models
* move code to remove unnecessary function
* rename a variable for clarity and change an assert
* move code and change variable name for clarity
* remove unnecessary asserts
* correct small bug
* correct a comment
* change variable names for clarity
* remove asserts
* change import from absolute to relative
* correct small error due to comma missing + correct import
* Add attribute Bark config
* add first version of tests
* update attention_map
* add tie_weights and resize_token_embeddings for fineModel
* correct getting attention_mask in generate_text_semantic
* remove Bark inference trick
* leave more choices in barkProcessor
* remove _no_split_modules
* fixe error in forward of block and introduce clearer notations
* correct converting script with last changes
* make style + add draft bark.mdx
* correct BarkModelTest::test_generate_text_semantic
* add Bark in main README
* add dummy_pt_objects for Bark
* add missing models in the main init
* correct test_decoder_model_past_with_large_inputs
* disable torchscript test
* change docstring of BarkProcessor
* Add test_processor_bark
* make style
* correct copyrights
* add bark.mdx + make style, quality and consistency
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Remove unnecessary test method
* simply logic of a test
* Only check first ids for slow audio generation
* split full end-to-end generation tests
* remove unneccessary comment
* change submodel names for clearer naming
* remove ModuleDict from modeling_bark
* combine two if statements
* ensure that an edge misued won't happen
* modify variable name
* move code snippet to the right place (coarse instead of semantic)
* change BarkSemanticModule -> BarkSemanticModel
* align BarkProcessor with transformers paradigm
* correct BarkProcessor tests with last commit changes
* change _validate_voice_preset to an instance method instead of a class method
* tie_weights already called with post_init
* add codec_model config to configuration
* update bark modeling tests with recent BarkProcessor changes
* remove SubModelPretrainedModel + change speakers embeddings prompt type in BarkModel
* change absolute imports to relative
* remove TODO
* change docstrings
* add examples to docs and docstrings
* make style
* uses BatchFeature in BarkProcessor insteads of dict
* continue improving docstrings and docs + make style
* correct docstrings examples
* more comprehensible speaker_embeddings load/Save
* rename speaker_embeddings_dict -> speaker_embeddings
* correct bark.mdx + add bark to documentation_tests
* correct docstrings configuration_bark
* integrate last nit suggestions
* integrate BarkGeneration configs
* make style
* remove bark tests from documentation_tests.txt because timeout - tested manually
* add proper generation config initialization
* small bark.mdx documentation changes
* rename bark.mdx -> bark.md
* add torch.no_grad behind BarkModel.generate_audio()
* replace assert by ValueError in convert_suno_to_hf.py
* integrate a series of short comments from reviewer
* move SemanticLogitsProcessors and remove .detach() from Bark docs and docstrings
* actually remove SemanticLogitsProcessor from modeling_bark.oy
* BarkProcessor returns a single output instead of tuple + correct docstrings
* make style + correct bug
* add initializer_range to BarkConfig + correct slow modeling tests
* add .clone() to history_prompt.coarse_prompt to avoid modifying input array
* Making sure no extra "`" are present
* remove extra characters in modeling_bark.py
* Correct output if history_prompt is None
* remove TODOs
* remove ravel comment
* completing generation_configuration_bark.py docstrings
* change docstrings - number of audio codebooks instead of Encodec codebooks
* change 'bias' docstrings in configuration_bark.py
* format code
* rename BarkModel.generate_audio -> BarkModel.generate_speech
* modify AutoConfig instead of EncodecConfig in BarkConfig
* correct AutoConfig wrong init
* refactor BarkModel and sub-models generate_coarse, generate_fine, generate_text_semantic
* remove SemanticLogitsProcessor and replace it with SuppressTokensLogitsProcessor
* move nb_codebook related config arguments to BarkFineConfig
* rename bark.mdx -> bark.md
* correcting BarkModelConfig from_pretrained + remove keys_to_ignore
* correct bark.md with correct hub path
* correct code bug in bark.md
* correct list tokens_to_suppress
* modify Processor to load nested speaker embeddings in a safer way
* correct batch sampling in BarkFineModel.generate_fine
* Apply suggestions from code review
Small docstrings correction and code improvements
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* give more details about num_layers in docstrings
* correct indentation mistake
* correct submodelconfig order of docstring variables
* put audio models in alphabetical order in utils/check_repo.my
* remove useless line from test_modeling_bark.py
* makes BarkCoarseModelTest inherits from (ModelTesterMixin, GenerationTesterMixin, unittest.TestCase) instead of BarkSemanticModelTest
* make a Tester class for each sub-model instead of inheriting
* add test_resize_embeddings=True for Bark sub-models
* add Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads
* remove 'Copied fom Bark' comment
* remove unneccessary comment
* change np.min -> min in modeling_bark.py
* refactored all custom layers to have Bark prefix
* add attention_mask as an argument of generate_text_semantic
* refactor sub-models start docstrings to have more precise config class definition
* move _tied_weights_keys overriding
* add docstrings to generate_xxx in modeling_bark.py
* add loading whole BarkModel to convert_suno_to_hf
* refactor attribute and variable names
* make style convert_suno
* update bark checkpoints
* remove never entered if statement
* move bark_modeling docstrings after BarkPretrainedModel class definition
* refactor modeling_bark.py: kv -> key_values
* small nits - code refactoring and removing unecessary lines from _init_weights
* nits - replace inplace method by variable assigning
* remove *optional* when necessary
* remove some lines in generate_speech
* add default value for optional parameter
* Refactor preprocess_histories_before_coarse -> preprocess_histories
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* correct usage after refactoring
* refactor Bark's generate_xxx -> generate and modify docstrings and tests accordingly
* update docstrings python in configuration_bark.py
* add bark files in utils/documentation_test.txt
* correct docstrings python snippet
* add the ability to use parameters in the form of e.g coarse_temperature
* add semantic_max_new_tokens in python snippet in docstrings for quicker generation
* Reformate sub-models kwargs in BakModel.generate
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* correct kwargs in BarkModel.generate
* correct attention_mask kwarg in BarkModel.generate
* add tests for sub-models args in BarkModel.generate and correct BarkFineModel.test_generate_fp16
* enrich BarkModel.generate docstrings with a description of how to use the kwargs
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Initial commit
* Update src/transformers/models/falcon/configuration_falcon.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/falcon/configuration_falcon.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Cleanup config docstring
* Update src/transformers/models/falcon/configuration_falcon.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Convert to relative imports
* Remove torch < 1.8 warning
* Restructure cos_sin header
* qkv -> query, key, value
* Refactor attention calculation
* Add a couple of config variables to account for the different checkpoints
* Successful merging of the code paths!
* Fix misplaced line in the non-parallel attention path
* Update config and tests
* Add a pad_token_id when testing
* Support output_attentions when alibi is None
* make fixup
* Skip KV cache shape test
* No more _keys_to_ignore_on_load_missing
* Simplify self attention a bit
* Simplify self attention a bit
* make fixup
* stash commit
* Some more attention mask updates
* Should pass all tests except assisted generation!
* Add big model generation test
* make fixup
* Add temporary workaround for test
* Test overrides for assisted generation
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update tests/models/falcon/test_modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Test overrides for assisted generation
* Add generation demo
* Update copyright
* Make the docstring model actually small
* Add module-level docstring
* Remove all assertions
* Add copied from bloom
* Reformat the QKV layer
* Add copied from bloom
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Remove unused line and reformat
* No single letter variables
* Cleanup return names
* Add copied from line
* Remove the deprecated arguments blocks
* Change the embeddings test to an alibi on/off test
* Remove position_ids from FalconForQA
* Remove old check for token type IDs
* Fix the alibi path when multi_query is False
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/falcon/modeling_falcon.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/falcon/test_modeling_falcon.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update config naming
* Fix typo for new_decoder_architecture
* Add some comments
* Fix docstring
* Fix docstring
* Create range in the right dtype from the start
* Review comment cleanup
* n_head_kv -> num_kv_heads
* self.alibi -> self.use_alibi
* self.num_kv -> self.num_kv_heads
* Reorder config args
* Made alibi arguments Optional
* Add all model docstrings
* Add extra checkpoints
* Add author info for Falcon
* Stop removing token_type_ids because our checkpoints shouldn't return it anymore
* Add one hopeful comment for the future
* Fix typo
* Update tests, fix cache issue for generation
* Use -1e9 instead of -inf to avoid float overflow
* Recompute the rotary embeddings much less often
* Re-enable disabled tests
* One final fix to attention mask calculation, and update tests
* Cleanup targeting falcon-40b equivalency
* Post-rebase docs update
* Update docstrings, especially in the config
* More descriptive variable names, and comments where we can't rename them
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* docs: ko: tflite.mdx
* feat: nmt and manual edit `tflite.mdx`
* revised: resolve suggestions tflite.mdx
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
* revised: resolve suggestions and new line tflite.mdx
Co-Authored-By: Wonhyeong Seo <wonhseo@kakao.com>
Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Jungnerd <46880056+jungnerd@users.noreply.github.com>
---------
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
* Squash 88 commits
* Use markdown
* Remove mdx files due to bad rebase
* Fix modeling files due to bad rebase
* Fix style
* Update comment
* fix
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Update outdated hyperlink hpo_train.md
Link to RayTune search space API docs was outdated - have provided correct new link for docs.
Co-authored-by: Joshua Samuel <66880119+Joshsamuel101@users.noreply.github.com>
* import torch before it is used
* style
Signed-off-by: byhsu <byhsu@linkedin.com>
---------
Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
* Add test_backbone for convnext
* Add TimmBackbone model
* Add check for backbone type
* Tidying up - config checks
* Update convnextv2
* Tidy up
* Fix indices & clearer comment
* Exceptions for config checks
* Correclty update config for tests
* Safer imports
* Safer safer imports
* Fix where decorators go
* Update import logic and backbone tests
* More import fixes
* Fixup
* Only import all_models if torch available
* Fix kwarg updates in from_pretrained & main rebase
* Tidy up
* Add tests for AutoBackbone
* Tidy up
* Fix import error
* Fix up
* Install nattan in doc_test_job
* Revert back to setting self._out_xxx directly
* Bug fix - out_indices mapping from out_features
* Fix tests
* Dont accept output_loading_info for Timm models
* Set out_xxx and don't remap
* Use smaller checkpoint for test
* Don't remap timm indices - check out_indices based on stage names
* Skip test as it's n/a
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Cleaner imports / spelling is hard
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* docs: ko: tasks_explained.mdx
* feat: nmt and manual edit `tasks_explained.mdx`
* revised: resolve suggestions task_explained.mdx
* fixed: added draft of reference docs
Co-Authored-By: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
* revised: resolve suggestions(voca, spell check) task_explained.mdx
Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
* revised: remove duplicate sentence in task_explained.mdx
* fixed: remove draft of reference docs
- I think it will be confusing in the translation process.
- This issue is included in #23971.
---------
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
Co-authored-by: Nayeon Han <nayeon2.han@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
* #23675 Registering Malay language
* removing untranslated files
* some translate
* more updates to toctree
* inc index
* additional translations for toctree
* translations of more sections
* removing untranslated file
* translated index.mdx to malay
* Add tf code for efficientformer
* Fix return dict bug - return last hidden state after last stage
* Fix corresponding return dict bug
* Override test tol
* Change default values of training to False
* Set training to default False X3
* Rm axis from ln
* Set init in dense projection
* Rm debug stuff
* Make style; all tests pass.
* Modify year to 2023
* Fix attention biases codes
* Update the shape list logic
* Add a batch norm eps config
* Remove extract comments in test files
* Add conditional attn and hidden states return for serving output
* Change channel dim checking logic
* Add exception for withteacher model in training mode
* Revert layer count for now
* Add layer count for conditional layer naming
* Transpose for conv happens only in main layer
* Make tests smaller
* Make style
* Update doc
* Rm from_pt
* Change to actual expect image class label
* Remove stray print in tests
* Update image processor test
* Remove the old serving output logic
* Make style
* Make style
* Complete test
* doc refocused on using optimum, tflite
* minor updates to fix checks
* Apply suggestions from code review
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
* TFLite to separate page, added links
* Removed the onnx list builder
* make style
* Update docs/source/en/serialization.mdx
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
---------
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
* Added lion and paged optimizers and made original tests pass.
* Added tests for paged and lion optimizers.
* Added and fixed optimizer tests.
* Style and quality checks.
* Initial draft. Some tests fail.
* Fixed dtype bug.
* Fixed bug caused by torch_dtype='auto'.
* All test green for 8-bit and 4-bit layers.
* Added fix for fp32 layer norms and bf16 compute in LLaMA.
* Initial draft. Some tests fail.
* Fixed dtype bug.
* Fixed bug caused by torch_dtype='auto'.
* All test green for 8-bit and 4-bit layers.
* Added lion and paged optimizers and made original tests pass.
* Added tests for paged and lion optimizers.
* Added and fixed optimizer tests.
* Style and quality checks.
* Fixing issues for PR #23479.
* Added fix for fp32 layer norms and bf16 compute in LLaMA.
* Reverted variable name change.
* Initial draft. Some tests fail.
* Fixed dtype bug.
* Fixed bug caused by torch_dtype='auto'.
* All test green for 8-bit and 4-bit layers.
* Added lion and paged optimizers and made original tests pass.
* Added tests for paged and lion optimizers.
* Added and fixed optimizer tests.
* Style and quality checks.
* Added missing tests.
* Fixup changes.
* Added fixup changes.
* Missed some variables to rename.
* revert trainer tests
* revert test trainer
* another revert
* fix tests and safety checkers
* protect import
* simplify a bit
* Update src/transformers/trainer.py
* few fixes
* add warning
* replace with `load_in_kbit = load_in_4bit or load_in_8bit`
* fix test
* fix tests
* this time fix tests
* safety checker
* add docs
* revert torch_dtype
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* multiple fixes
* update docs
* version checks and multiple fixes
* replace `is_loaded_in_kbit`
* replace `load_in_kbit`
* change methods names
* better checks
* oops
* oops
* address final comments
---------
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* First commit
* Add auto-translation with GPT-4
* make fixup
* Add a functional layernorm for TF
* Add all the auxiliary imports etc.
* Add the extra processor and tests
* rebase to main
* Add all the needed fixes to the GPT code
* make fixup
* Make convolutions channels-last so they run on CPU
* make fixup
* Fix final issues
* Fix other models affected by test change
* Clarify comment on the sparse_prompt_embeddings check
* Refactor functional_layernorm, use shape_list in place of .shape in some places
* Remove deprecated torch-alike code
* Update tests/models/sam/test_modeling_tf_sam.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/sam/test_modeling_tf_sam.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Refactor processor with common methods and separated private methods
* make fixup
* Quietly delete the file that didn't do anything (sorry Sylvain)
* Refactor the processor tests into one file
* make fixup
* Clean up some unnecessary indirection
* Fix TF mask postprocessing
* Add more processor equivalence tests
* Refactor generate_crop_boxes to use framework-neutral np code
* Make the serving output correctly conditional
* Fix error message line length
* Use dict keys rather than indices internally in both TF and PT SAM call/forward
* Return dicts internally in the call/forward methods
* Revert changes to common tests and just override check_pt_tf_outputs
* Revert changes to other model tests
* Clarify comments for functional layernorm
* Add missing transpose from PT code
* Removed unused copied from in PT code
* Remove overrides for tests that don't exist in TF
* Fix transpose and update tests for PT and TF to check pred_masks
* Add training flag
* Update tests to use TF checkpoints
* Update index.mdx
* Add missing cross-test decorator
* Remove optional extra asterisks
* Revert return_dict changes in PT code
* Update src/transformers/models/sam/modeling_tf_sam.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove None return annotations on init methods
* Update tests/models/sam/test_processor_sam.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix input_boxes shapes
* make fixup
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Remove nestedness in tool config
* Really do it
* Use remote tools descriptions
* Work
* Clean up eval
* Changes
* Tools
* Tools
* tool
* Fix everything
* Use last result/assign for evaluation
* Prompt
* Remove hardcoded selection
* Evaluation for chat agents
* correct some spelling
* Small fixes
* Change summarization model (#23172)
* Fix link displayed
* Update description of the tool
* Fixes in chat prompt
* Custom tools, custom prompt
* Tool clean up
* save_pretrained and push_to_hub for tool
* Fix init
* Tests
* Fix tests
* Tool save/from_hub/push_to_hub and tool->load_tool
* Clean push_to_hub and add app file
* Custom inference API for endpoints too
* Clean up
* old remote tool and new remote tool
* Make a requirements
* return_code adds tool creation
* Avoid redundancy between global variables
* Remote tools can be loaded
* Tests
* Text summarization tests
* Quality
* Properly mark tests
* Test the python interpreter
* And the CI shall be green.
* fix loading of additional tools
* Work on RemoteTool and fix tests
* General clean up
* Guard imports
* Fix tools
* docs: Fix broken link in 'How to add a model...' (#23216)
fix link
* Get default endpoint from the Hub
* Add guide
* Simplify tool config
* Docs
* Some fixes
* Docs
* Docs
* Docs
* Fix code returned by agent
* Try this
* Match args with signature in remote tool
* Should fix python interpreter for Python 3.8
* Fix push_to_hub for tools
* Other fixes to push_to_hub
* Add API doc page
* Docs
* Docs
* Custom tools
* Pin tensorflow-probability (#23220)
* Pin tensorflow-probability
* [all-test]
* [all-test] Fix syntax for bash
* PoC for some chaining API
* Text to speech
* J'ai pris des libertés
* Rename
* Basic python interpreter
* Add agents
* Quality
* Add translation tool
* temp
* GenQA + LID + S2T
* Quality + word missing in translation
* Add open assistance, support f-strings in evaluate
* captioning + s2t fixes
* Style
* Refactor descriptions and remove chain
* Support errors and rename OpenAssistantAgent
* Add setup
* Deal with typos + example of inference API
* Some rename + README
* Fixes
* Update prompt
* Unwanted change
* Make sure everyone has a default
* One prompt to rule them all.
* SD
* Description
* Clean up remote tools
* More remote tools
* Add option to return code and update doc
* Image segmentation
* ControlNet
* Gradio demo
* Diffusers protection
* Lib protection
* ControlNet description
* Cleanup
* Style
* Remove accelerate and try to be reproducible
* No randomness
* Male Basic optional in token
* Clean description
* Better prompts
* Fix args eval in interpreter
* Add tool wrapper
* Tool on the Hub
* Style post-rebase
* Big refactor of descriptions, batch generation and evaluation for agents
* Make problems easier - interface to debug
* More problems, add python primitives
* Back to one prompt
* Remove dict for translation
* Be consistent
* Add prompts
* New version of the agent
* Evaluate new agents
* New endpoints agents
* Make all tools a dict variable
* Typo
* Add problems
* Add to big prompt
* Harmonize
* Add tools
* New evaluation
* Add more tools
* Build prompt with tools descriptions
* Tools on the Hub
* Let's chat!
* Cleanup
* Temporary bs4 safeguard
* Cache agents and clean up
* Blank init
* Fix evaluation for agents
* New format for tools on the Hub
* Add method to reset state
* Remove nestedness in tool config
* Really do it
* Use remote tools descriptions
* Work
* Clean up eval
* Changes
* Tools
* Tools
* tool
* Fix everything
* Use last result/assign for evaluation
* Prompt
* Remove hardcoded selection
* Evaluation for chat agents
* correct some spelling
* Small fixes
* Change summarization model (#23172)
* Fix link displayed
* Update description of the tool
* Fixes in chat prompt
* Custom tools, custom prompt
* Tool clean up
* save_pretrained and push_to_hub for tool
* Fix init
* Tests
* Fix tests
* Tool save/from_hub/push_to_hub and tool->load_tool
* Clean push_to_hub and add app file
* Custom inference API for endpoints too
* Clean up
* old remote tool and new remote tool
* Make a requirements
* return_code adds tool creation
* Avoid redundancy between global variables
* Remote tools can be loaded
* Tests
* Text summarization tests
* Quality
* Properly mark tests
* Test the python interpreter
* And the CI shall be green.
* Work on RemoteTool and fix tests
* fix loading of additional tools
* General clean up
* Guard imports
* Fix tools
* Get default endpoint from the Hub
* Simplify tool config
* Add guide
* Docs
* Some fixes
* Docs
* Docs
* Fix code returned by agent
* Try this
* Docs
* Match args with signature in remote tool
* Should fix python interpreter for Python 3.8
* Fix push_to_hub for tools
* Other fixes to push_to_hub
* Add API doc page
* Fixes
* Doc fixes
* Docs
* Fix audio
* Custom tools
* Audio fix
* Improve custom tools docstring
* Docstrings
* Trigger CI
* Mode docstrings
* More docstrings
* Improve custom tools
* Fix for remote tools
* Style
* Fix repo consistency
* Quality
* Tip
* Cleanup on doc
* Cleanup toc
* Add disclaimer for starcoder vs openai
* Remove disclaimer
* Small fixed in the prompts
* 4.29
* Update src/transformers/tools/agents.py
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Complete documentation
* Small fixes
* Agent evaluation
* Note about gradio-tools & LC
* Clean up agents and prompt
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Note about gradio-tools & LC
* Add copyrights and address review comments
* Quality
* Add all language codes
* Add remote tool tests
* Move custom prompts to other docs
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* TTS tests
* Quality
---------
Co-authored-by: Lysandre <hi@lyand.re>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
Co-authored-by: Connor Henderson <connor.henderson@talkiatry.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* intiial commit
* new styling
* update
* just run doctest in CI
* remove more test for fast dev
* update
* update refs
* update path and fetch upstream
* update documentatyion trests
* typo
* parse pwd
* don't check for files that are in hidden folders
* just give paths relative to transformers
* update
* update
* update
* major refactoring
* make sure options is ok
* lest test that mdx is tested
* doctest glob
* nits
* update doctest nightly
* some cleaning
* run correct test on diff
* debug
* run on a single worker
* skip_cuda_test tampkate
* updates
* add rA and continue on failure
* test options
* parse `py` codeblock?
* we don't need to replace ignore results, don't remember whyu I put it
* cleanup
* more cleaning
* fix arg
* more cleaning
* clean an todo
* more pre-processing
* doctest-module has none so extra `- ` is needed
* remove logs
* nits
* doctest-modules ....
* oups
* let's use sugar
* make dataset go quiet
* add proper timeout
* nites
* spleling timeout
* update
* properly skip tests that have CUDSA
* proper skipping
* cleaning main and get tests to run
* remove make report?
* remove tee
* some updates
* tee was removed but is the full output still available?
* [all-test]
* only our tests
* don't touch tee in this PR
* no atee-sys
* proper sub
* monkey
* only replace call
* fix sub
* nits
* nits
* fix invalid syntax
* add skip cuda doctest env variable
* make sure all packages are installed
* move file
* update check repo
* revert changes
* nit
* finish cleanup
* fix re
* findall
* update don't test init files
* ignore pycache
* `-ignore-pycache` when running pytests
* try to fix the import missmatch error
* install dec
* pytest is required as doctest_utils imports things from it
* the only log issues were dataset, ignore results should work
* more cleaning
* Update .circleci/create_circleci_config.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [ydshieh] empty string if cuda is found
* [ydshieh] fix condition
* style
* [ydshieh] fix
* Add comment
* style
* style
* show failure
* trigger CI
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* First draft of RWKV-4
* Add support for generate
* Style post-rebase
* Properly use state
* Write doc
* Fix doc
* More math
* Add model to README, dummies and clean config
* Fix init
* multiple fixes:
- fix common tests
- fix configuraion default values
- add CI test for checking state computation
- fix some CI tests
* correct tokenizer
* some tweaks
- fix config docstring
- fix failing tests
* fix CI tests
- add output_attention / output_hidden_states
- override test_initialization
- fix failing CIs
* fix conversion script
- fix sharded case
- add new arguments
* add slow tests + more fixes on conversion script
* add another test
* final fixes
* change single name variable
* add mock attention mask for pipeline to work
* correct eos token id
* fix nits
* add checkpoints
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add `tie_word_embeddings` in docstring
* change tensor name
* fix final nits
* Trigger CI
---------
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* first draft - gives index error in question_answering.py
* maturing
* no labels
* pipeline should know about QA
* fixing checks
* formatting
* fixed docstring
* initial commit
* formatting
* adding the class to many places
* towards less unhappy checks
* nearly there
* and gpt neox for qa
* use right model
* forgot this one
* base_model_prefix is "gpt_neox" for GPTNeoX* models
* unnecessary stuff
* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* format
* Update src/transformers/models/gpt_neox/modeling_gpt_neox.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* removed gpt2 stuff
---------
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* first draft - gives index error in question_answering.py
* maturing
* no labels
* pipeline should know about QA
* fixing checks
* formatting
* fixed docstring
* initial commit
* formatting
* adding the class to many places
* towards less unhappy checks
* nearly there
* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* avoid error
* moving to device of star/end_logits
---------
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [doc] Try a few ≠ ways of linking to Papers, users, and org profiles
* Empty commit
* Empty commit now that the backend is fixed
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* first draft - gives index error in question_answering.py
* maturing
* no labels
* pipeline should know about QA
* fixing checks
* formatting
* fixed docstring
* make sure legacy code executes
* comment
* like this
---------
Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
docs: ko: `tasks/question_answering.mdx` to Korean
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Kihoon Son <75935546+KIHOON71@users.noreply.github.com>
* Depricate xpu_backend for ddp_backend
* Typo
* Only do a minor deprecation, no need for major
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
docs: ko: `run_scripts` to Korean
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
docs: ko: `tasks/masked_language_modeling.mdx` to Korean
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
Adds FocalNet by Microsoft to transformers
---------
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: alaradirik <alaradirik@gmail.com>
fix: docs: ko: sagemaker anchors and `_toctree.yml`
Co-authored-by: Hyeonseo Yun <0525_hhgus@naver.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Na Yeon Han <nayeon2.han@gmail.com>
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
docs: ko: translated `custom_models.mdx`
Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Gabriel Yang <gabrielwithhappy@gmail.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>