mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-24 14:58:56 +06:00
Add bloom flax (#25094)
* First commit * step 1 working * add alibi * placeholder for `scan` * add matrix mult alibi * beta scaling factor for bmm * working v1 - simple forward pass * move layer_number from attribute to arg in call * partial functioning scan * hacky working scan * add more modifs * add test * update scan for new kwarg order * fix position_ids problem * fix bug in attention layer * small fix - do the alibi broadcasting only once * prelim refactor * finish refactor * alibi shifting * incorporate dropout_add to attention module * make style * make padding work again * update * remove bogus file * up * get generation to work * clean code a bit * added small tests * adding albii test * make CI tests pass: - change init weight - add correct tuple for output attention - add scan test - make CI tests work * fix few nits * fix nit onnx * fix onnx nit * add missing dtype args to nn.Modules * remove debugging statements * fix scan generate * Update modeling_flax_bloom.py * Update test_modeling_flax_bloom.py * Update test_modeling_flax_bloom.py * Update test_modeling_flax_bloom.py * fix small test issue + make style * clean up * Update tests/models/bloom/test_modeling_flax_bloom.py Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * fix function name * small fix test * forward contrib credits from PR17761 * Fix failing test * fix small typo documentation * fix non passing test - remove device from build alibi * refactor call - refactor `FlaxBloomBlockCollection` module * make style * upcast to fp32 * cleaner way to upcast * remove unused args * remove layer number * fix scan test * make style * fix i4 casting * fix slow test * Update src/transformers/models/bloom/modeling_flax_bloom.py Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * remove `layer_past` * refactor a bit * fix `scan` slow test * remove useless import * major changes - remove unused code - refactor a bit - revert import `torch` * major refactoring - change build alibi * remove scan * fix tests * make style * clean-up alibi * add integration tests * up * fix batch norm conversion * style * style * update pt-fx cross tests * update copyright * Update src/transformers/modeling_flax_pytorch_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * per-weight check * style * line formats --------- Co-authored-by: younesbelkada <younesbelkada@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: haileyschoelkopf <haileyschoelkopf@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
This commit is contained in:
parent
0c790ddbd1
commit
e93103632b
@ -218,7 +218,7 @@ Flax), PyTorch, und/oder TensorFlow haben.
|
||||
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
|
||||
| BLOOM | ❌ | ✅ | ✅ | ❌ | ✅ |
|
||||
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
|
@ -300,7 +300,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| BlenderbotSmall | ✅ | ✅ | ✅ |
|
||||
| BLIP | ✅ | ✅ | ❌ |
|
||||
| BLIP-2 | ✅ | ❌ | ❌ |
|
||||
| BLOOM | ✅ | ❌ | ❌ |
|
||||
| BLOOM | ✅ | ❌ | ✅ |
|
||||
| BridgeTower | ✅ | ❌ | ❌ |
|
||||
| CamemBERT | ✅ | ✅ | ❌ |
|
||||
| CANINE | ✅ | ❌ | ❌ |
|
||||
|
@ -85,3 +85,13 @@ See also:
|
||||
|
||||
[[autodoc]] BloomForQuestionAnswering
|
||||
- forward
|
||||
|
||||
## FlaxBloomModel
|
||||
|
||||
[[autodoc]] FlaxBloomModel
|
||||
- __call__
|
||||
|
||||
## FlaxBloomForCausalLM
|
||||
|
||||
[[autodoc]] FlaxBloomForCausalLM
|
||||
- __call__
|
||||
|
@ -3892,6 +3892,13 @@ else:
|
||||
"FlaxBlenderbotSmallPreTrainedModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.bloom"].extend(
|
||||
[
|
||||
"FlaxBloomForCausalLM",
|
||||
"FlaxBloomModel",
|
||||
"FlaxBloomPreTrainedModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.clip"].extend(
|
||||
[
|
||||
"FlaxCLIPModel",
|
||||
@ -7275,6 +7282,7 @@ if TYPE_CHECKING:
|
||||
FlaxBlenderbotSmallModel,
|
||||
FlaxBlenderbotSmallPreTrainedModel,
|
||||
)
|
||||
from .models.bloom import FlaxBloomForCausalLM, FlaxBloomModel, FlaxBloomPreTrainedModel
|
||||
from .models.clip import (
|
||||
FlaxCLIPModel,
|
||||
FlaxCLIPPreTrainedModel,
|
||||
|
@ -135,7 +135,21 @@ def rename_key_and_reshape_tensor(
|
||||
|
||||
def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model):
|
||||
# convert pytorch tensor to numpy
|
||||
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
|
||||
# numpy currently does not support bfloat16, need to go over float32 in this case to not lose precision
|
||||
try:
|
||||
import torch # noqa: F401
|
||||
except ImportError:
|
||||
logger.error(
|
||||
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"
|
||||
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
|
||||
" instructions."
|
||||
)
|
||||
raise
|
||||
|
||||
weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()}
|
||||
pt_state_dict = {
|
||||
k: v.numpy() if not v.dtype == torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items()
|
||||
}
|
||||
|
||||
model_prefix = flax_model.base_model_prefix
|
||||
|
||||
@ -163,6 +177,7 @@ def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model):
|
||||
# Need to change some parameters name to match Flax names
|
||||
for pt_key, pt_tensor in pt_state_dict.items():
|
||||
pt_tuple_key = tuple(pt_key.split("."))
|
||||
is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16
|
||||
|
||||
# remove base model prefix if necessary
|
||||
has_base_model_prefix = pt_tuple_key[0] == model_prefix
|
||||
@ -197,11 +212,15 @@ def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model):
|
||||
continue
|
||||
|
||||
# also add unexpected weight so that warning is thrown
|
||||
flax_state_dict[("params",) + flax_key] = jnp.asarray(flax_tensor)
|
||||
flax_state_dict[("params",) + flax_key] = (
|
||||
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
|
||||
)
|
||||
|
||||
else:
|
||||
# also add unexpected weight so that warning is thrown
|
||||
flax_state_dict[flax_key] = jnp.asarray(flax_tensor)
|
||||
flax_state_dict[flax_key] = (
|
||||
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
|
||||
)
|
||||
|
||||
return unflatten_dict(flax_state_dict)
|
||||
|
||||
|
@ -35,6 +35,7 @@ FLAX_MODEL_MAPPING_NAMES = OrderedDict(
|
||||
("big_bird", "FlaxBigBirdModel"),
|
||||
("blenderbot", "FlaxBlenderbotModel"),
|
||||
("blenderbot-small", "FlaxBlenderbotSmallModel"),
|
||||
("bloom", "FlaxBloomModel"),
|
||||
("clip", "FlaxCLIPModel"),
|
||||
("distilbert", "FlaxDistilBertModel"),
|
||||
("electra", "FlaxElectraModel"),
|
||||
@ -139,6 +140,7 @@ FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
|
||||
("bart", "FlaxBartForCausalLM"),
|
||||
("bert", "FlaxBertForCausalLM"),
|
||||
("big_bird", "FlaxBigBirdForCausalLM"),
|
||||
("bloom", "FlaxBloomForCausalLM"),
|
||||
("electra", "FlaxElectraForCausalLM"),
|
||||
("gpt-sw3", "FlaxGPT2LMHeadModel"),
|
||||
("gpt2", "FlaxGPT2LMHeadModel"),
|
||||
|
@ -14,7 +14,13 @@
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
||||
from ...utils import (
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
is_flax_available,
|
||||
is_tokenizers_available,
|
||||
is_torch_available,
|
||||
)
|
||||
|
||||
|
||||
_import_structure = {
|
||||
@ -44,6 +50,19 @@ else:
|
||||
"BloomForQuestionAnswering",
|
||||
]
|
||||
|
||||
try:
|
||||
if not is_flax_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
_import_structure["modeling_flax_bloom"] = [
|
||||
"FlaxBloomForCausalLM",
|
||||
"FlaxBloomModel",
|
||||
"FlaxBloomPreTrainedModel",
|
||||
]
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
|
||||
|
||||
@ -71,6 +90,13 @@ if TYPE_CHECKING:
|
||||
BloomPreTrainedModel,
|
||||
)
|
||||
|
||||
try:
|
||||
if not is_flax_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
from .modeling_flax_bloom import FlaxBloomForCausalLM, FlaxBloomModel, FlaxBloomPreTrainedModel
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
734
src/transformers/models/bloom/modeling_flax_bloom.py
Normal file
734
src/transformers/models/bloom/modeling_flax_bloom.py
Normal file
@ -0,0 +1,734 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 HuggingFace Inc. Team and Bigscience Workshop. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Flax BLOOM model."""
|
||||
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import flax.linen as nn
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
||||
from flax.linen import combine_masks, dot_product_attention_weights, make_causal_mask
|
||||
from flax.linen.activation import tanh
|
||||
from flax.traverse_util import flatten_dict, unflatten_dict
|
||||
from jax import lax
|
||||
|
||||
from ...modeling_flax_outputs import (
|
||||
FlaxBaseModelOutput,
|
||||
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
||||
FlaxCausalLMOutput,
|
||||
)
|
||||
from ...modeling_flax_utils import FlaxPreTrainedModel, append_call_sample_docstring
|
||||
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
||||
from .configuration_bloom import BloomConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "bigscience/bloom"
|
||||
_CONFIG_FOR_DOC = "BloomConfig"
|
||||
|
||||
|
||||
BLOOM_START_DOCSTRING = r"""
|
||||
|
||||
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a Flax Linen
|
||||
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
||||
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
||||
|
||||
Finally, this model supports inherent JAX features such as:
|
||||
|
||||
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
||||
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
||||
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
||||
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
||||
|
||||
Parameters:
|
||||
config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
||||
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
||||
`jax.numpy.bfloat16` (on TPUs).
|
||||
|
||||
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
||||
specified all the computation will be performed with the given `dtype`.
|
||||
|
||||
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
||||
parameters.**
|
||||
|
||||
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
||||
[`~FlaxPreTrainedModel.to_bf16`].
|
||||
"""
|
||||
|
||||
BLOOM_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
|
||||
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
||||
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
||||
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
def build_alibi_tensor(attention_mask: jnp.ndarray, num_heads: int, dtype: Optional[jnp.dtype] = jnp.float32):
|
||||
"""
|
||||
Flax implementation of the BLOOM Alibi tensor. BLOOM Alibi tensor is not causal as the original paper mentions, it
|
||||
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
||||
`softmax(l+a) = softmax(l)`. Based on
|
||||
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
||||
Link to paper: https://arxiv.org/abs/2108.12409
|
||||
|
||||
Args:
|
||||
attention_mask (`jnp.ndarray`):
|
||||
Token-wise attention mask, this should be of shape `(batch_size, max_seq_len)`.
|
||||
num_heads (`int`):
|
||||
Number of attention heads.
|
||||
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
|
||||
The data type (dtype) of the output tensor.
|
||||
|
||||
Returns: Alibi tensor of shape `(batch_size * num_heads, 1, max_seq_len)`.
|
||||
"""
|
||||
batch_size, seq_length = attention_mask.shape
|
||||
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
||||
base = jnp.array(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=jnp.float32)
|
||||
powers = jnp.arange(1, 1 + closest_power_of_2, dtype=jnp.float32)
|
||||
slopes = jax.lax.pow(base, powers)
|
||||
|
||||
if closest_power_of_2 != num_heads:
|
||||
extra_base = jnp.array(2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=jnp.float32)
|
||||
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
||||
extra_powers = jnp.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=jnp.float32)
|
||||
slopes = jnp.cat([slopes, jax.lax.pow(extra_base, extra_powers)], axis=0)
|
||||
|
||||
# Note: the Alibi tensor will added to the attention bias that will be applied to the query, key product of attention
|
||||
# therefore, Alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
||||
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
||||
# so that the query_length dimension will then be broadcast correctly.
|
||||
# This is more or less identical to T5's relative position bias:
|
||||
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
||||
arange_tensor = ((attention_mask.cumsum(axis=-1) - 1) * attention_mask)[:, None, :]
|
||||
alibi = slopes[..., None] * arange_tensor
|
||||
alibi = jnp.expand_dims(alibi, axis=2)
|
||||
return jnp.asarray(alibi, dtype)
|
||||
|
||||
|
||||
class FlaxBloomAttention(nn.Module):
|
||||
config: BloomConfig
|
||||
dtype: jnp.dtype = jnp.float32
|
||||
|
||||
def setup(self):
|
||||
self.hidden_size = self.config.hidden_size
|
||||
self.num_heads = self.config.n_head
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
|
||||
|
||||
if self.head_dim * self.num_heads != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"`hidden_size` must be divisible by `num_heads` (got `hidden_size`: {self.hidden_size} and "
|
||||
f"`num_heads`: {self.num_heads})."
|
||||
)
|
||||
|
||||
dense = partial(
|
||||
nn.Dense,
|
||||
dtype=self.dtype,
|
||||
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
||||
)
|
||||
|
||||
self.query_key_value = dense(self.hidden_size * 3)
|
||||
self.dense = dense(self.hidden_size)
|
||||
self.resid_dropout = nn.Dropout(rate=self.config.hidden_dropout)
|
||||
|
||||
def _split_heads(self, hidden_states):
|
||||
return hidden_states.reshape(hidden_states.shape[:-1] + (self.num_heads, self.head_dim * 3))
|
||||
|
||||
def _merge_heads(self, hidden_states):
|
||||
return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))
|
||||
|
||||
@nn.compact
|
||||
# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJAttention._concatenate_to_cache
|
||||
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
||||
"""
|
||||
This function takes projected key, value states from a single input token and concatenates the states to cached
|
||||
states from previous steps. This function is slighly adapted from the official Flax repository:
|
||||
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
||||
"""
|
||||
# detect if we're initializing by absence of existing cache data.
|
||||
is_initialized = self.has_variable("cache", "cached_key")
|
||||
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
||||
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
||||
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
||||
|
||||
if is_initialized:
|
||||
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
||||
# update key, value caches with our new 1d spatial slices
|
||||
cur_index = cache_index.value
|
||||
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
||||
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
||||
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
||||
cached_key.value = key
|
||||
cached_value.value = value
|
||||
num_updated_cache_vectors = query.shape[1]
|
||||
cache_index.value = cache_index.value + num_updated_cache_vectors
|
||||
# causal mask for cached decoder self-attention: our single query position should only attend to those key
|
||||
# positions that have already been generated and cached, not the remaining zero elements.
|
||||
pad_mask = jnp.broadcast_to(
|
||||
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
||||
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
||||
)
|
||||
attention_mask = combine_masks(pad_mask, attention_mask)
|
||||
return key, value, attention_mask
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
alibi,
|
||||
attention_mask=None,
|
||||
deterministic: bool = True,
|
||||
init_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
batch_size, seq_length = hidden_states.shape[:2]
|
||||
|
||||
# proj q, k, v
|
||||
fused_qkv = self.query_key_value(hidden_states)
|
||||
fused_qkv = self._split_heads(fused_qkv)
|
||||
query, key, value = jnp.split(fused_qkv, 3, axis=-1)
|
||||
|
||||
causal_attention_mask = make_causal_mask(attention_mask, dtype="bool")
|
||||
|
||||
# for fast decoding causal attention mask should be shifted
|
||||
causal_attention_mask_shift = (
|
||||
self.variables["cache"]["cache_index"] if self.has_variable("cache", "cached_key") else 0
|
||||
)
|
||||
|
||||
# fast decoding for generate requires special attention_mask
|
||||
if self.has_variable("cache", "cached_key"):
|
||||
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
||||
causal_attention_mask = jax.lax.dynamic_slice(
|
||||
causal_attention_mask,
|
||||
(0, 0, causal_attention_mask_shift, 0),
|
||||
(1, 1, seq_length, max_decoder_length),
|
||||
)
|
||||
|
||||
# broadcast causal attention mask & attention mask to fit for merge
|
||||
causal_attention_mask = jnp.broadcast_to(
|
||||
causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:]
|
||||
)
|
||||
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape)
|
||||
attention_mask = combine_masks(attention_mask, causal_attention_mask)
|
||||
|
||||
dropout_rng = None
|
||||
if not deterministic and self.config.attention_dropout > 0.0:
|
||||
dropout_rng = self.make_rng("dropout")
|
||||
|
||||
# During fast autoregressive decoding, we feed one position at a time,
|
||||
# and cache the keys and values step by step.
|
||||
if self.has_variable("cache", "cached_key") or init_cache:
|
||||
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
|
||||
|
||||
# transform boolean mask into float mask
|
||||
mask_value = jnp.finfo(self.dtype).min
|
||||
attention_bias = lax.select(
|
||||
attention_mask > 0,
|
||||
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
||||
jnp.full(attention_mask.shape, mask_value).astype(self.dtype),
|
||||
)
|
||||
|
||||
attention_bias = attention_bias + alibi
|
||||
|
||||
# Cast in fp32 if the original dtype is different from fp32
|
||||
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
|
||||
|
||||
attn_weights = dot_product_attention_weights(
|
||||
query,
|
||||
key,
|
||||
bias=attention_bias,
|
||||
dropout_rng=dropout_rng,
|
||||
dropout_rate=self.config.attention_dropout,
|
||||
deterministic=deterministic,
|
||||
dtype=attention_dtype,
|
||||
)
|
||||
|
||||
# Cast back in the original dtype if the native dtype is not fp32
|
||||
if self.attention_softmax_in_fp32:
|
||||
attn_weights = attn_weights.astype(self.dtype)
|
||||
|
||||
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
|
||||
attn_output = self._merge_heads(attn_output)
|
||||
attn_output = self.dense(attn_output)
|
||||
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
|
||||
|
||||
attn_output = attn_output + residual
|
||||
|
||||
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
||||
return outputs
|
||||
|
||||
|
||||
class BloomGELU(nn.Module):
|
||||
def setup(self):
|
||||
self.dtype = jnp.float32
|
||||
|
||||
def __call__(self, x):
|
||||
return x * 0.5 * (1.0 + tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
||||
|
||||
|
||||
class FlaxBloomMLP(nn.Module):
|
||||
config: BloomConfig
|
||||
dtype: jnp.dtype = jnp.float32
|
||||
|
||||
def setup(self):
|
||||
hidden_size = self.config.hidden_size
|
||||
|
||||
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
|
||||
|
||||
self.dense_h_to_4h = nn.Dense(4 * hidden_size, dtype=self.dtype, kernel_init=kernel_init)
|
||||
self.dense_4h_to_h = nn.Dense(hidden_size, dtype=self.dtype, kernel_init=kernel_init)
|
||||
self.hidden_dropout = nn.Dropout(self.config.hidden_dropout)
|
||||
self.act = BloomGELU()
|
||||
|
||||
def __call__(self, hidden_states, residual, deterministic: bool = True):
|
||||
hidden_states = self.dense_h_to_4h(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
|
||||
intermediate_output = self.dense_4h_to_h(hidden_states)
|
||||
|
||||
intermediate_output = intermediate_output + residual
|
||||
hidden_states = self.hidden_dropout(intermediate_output, deterministic=deterministic)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlaxBloomBlock(nn.Module):
|
||||
config: BloomConfig
|
||||
dtype: jnp.dtype = jnp.float32
|
||||
|
||||
def setup(self):
|
||||
self.input_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
||||
|
||||
self.self_attention = FlaxBloomAttention(self.config, dtype=self.dtype)
|
||||
self.post_attention_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
||||
|
||||
self.mlp = FlaxBloomMLP(self.config, dtype=self.dtype)
|
||||
|
||||
self.apply_residual_connection_post_layernorm = self.config.apply_residual_connection_post_layernorm
|
||||
self.hidden_dropout = self.config.hidden_dropout
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
hidden_states,
|
||||
alibi,
|
||||
attention_mask=None,
|
||||
deterministic: bool = True,
|
||||
init_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
):
|
||||
layernorm_output = self.input_layernorm(hidden_states)
|
||||
|
||||
# layer norm before saving residual if config calls for it
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = hidden_states
|
||||
|
||||
# self-attention
|
||||
attn_outputs = self.self_attention(
|
||||
layernorm_output,
|
||||
residual=residual,
|
||||
alibi=alibi,
|
||||
attention_mask=attention_mask,
|
||||
deterministic=deterministic,
|
||||
init_cache=init_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
attention_output = attn_outputs[0]
|
||||
|
||||
outputs = attn_outputs[1:]
|
||||
|
||||
post_layernorm = self.post_attention_layernorm(attention_output)
|
||||
|
||||
# set residual based on config
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = post_layernorm
|
||||
else:
|
||||
residual = attention_output
|
||||
|
||||
output = self.mlp(post_layernorm, residual, deterministic=deterministic)
|
||||
|
||||
outputs = (output,) + outputs
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class FlaxBloomPreTrainedModel(FlaxPreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = BloomConfig
|
||||
base_model_prefix = "transformer"
|
||||
module_class: nn.Module = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: BloomConfig,
|
||||
input_shape: Tuple = (1, 1),
|
||||
seed: int = 0,
|
||||
dtype: jnp.dtype = jnp.float32,
|
||||
_do_init: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
||||
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
||||
|
||||
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
||||
# init input tensors
|
||||
input_ids = jnp.zeros(input_shape, dtype="i4")
|
||||
attention_mask = jnp.ones_like(input_ids)
|
||||
params_rng, dropout_rng = jax.random.split(rng)
|
||||
rngs = {"params": params_rng, "dropout": dropout_rng}
|
||||
|
||||
random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"]
|
||||
|
||||
if params is not None:
|
||||
random_params = flatten_dict(unfreeze(random_params))
|
||||
params = flatten_dict(unfreeze(params))
|
||||
for missing_key in self._missing_keys:
|
||||
params[missing_key] = random_params[missing_key]
|
||||
self._missing_keys = set()
|
||||
return freeze(unflatten_dict(params))
|
||||
else:
|
||||
return random_params
|
||||
|
||||
def init_cache(self, batch_size, max_length):
|
||||
r"""
|
||||
Args:
|
||||
batch_size (`int`):
|
||||
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
||||
max_length (`int`):
|
||||
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
||||
cache.
|
||||
"""
|
||||
# init input variables to retrieve cache
|
||||
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
||||
attention_mask = jnp.ones_like(input_ids)
|
||||
|
||||
init_variables = self.module.init(
|
||||
jax.random.PRNGKey(0), input_ids, attention_mask, return_dict=False, init_cache=True
|
||||
)
|
||||
return unfreeze(init_variables["cache"])
|
||||
|
||||
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
|
||||
def __call__(
|
||||
self,
|
||||
input_ids,
|
||||
attention_mask=None,
|
||||
past_key_values: dict = None,
|
||||
params: dict = None,
|
||||
dropout_rng: jax.random.PRNGKey = None,
|
||||
train: bool = False,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
):
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
batch_size, sequence_length = input_ids.shape
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = jnp.ones((batch_size, sequence_length))
|
||||
|
||||
# Handle any PRNG if needed
|
||||
rngs = {}
|
||||
if dropout_rng is not None:
|
||||
rngs["dropout"] = dropout_rng
|
||||
|
||||
inputs = {"params": params or self.params}
|
||||
|
||||
# If past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
|
||||
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
|
||||
# changed by FlaxBloomAttention module
|
||||
if past_key_values:
|
||||
inputs["cache"] = past_key_values
|
||||
mutable = ["cache"]
|
||||
else:
|
||||
mutable = False
|
||||
|
||||
outputs = self.module.apply(
|
||||
inputs,
|
||||
jnp.array(input_ids, dtype="i4"),
|
||||
jnp.array(attention_mask, dtype="i4"),
|
||||
not train,
|
||||
False,
|
||||
output_attentions,
|
||||
output_hidden_states,
|
||||
return_dict,
|
||||
rngs=rngs,
|
||||
mutable=mutable,
|
||||
)
|
||||
|
||||
# add updated cache to model output
|
||||
if past_key_values is not None and return_dict:
|
||||
outputs, past_key_values = outputs
|
||||
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
||||
return outputs
|
||||
elif past_key_values is not None and not return_dict:
|
||||
outputs, past_key_values = outputs
|
||||
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class FlaxBloomBlockCollection(nn.Module):
|
||||
config: BloomConfig
|
||||
dtype: jnp.dtype = jnp.float32
|
||||
|
||||
def setup(self):
|
||||
self.layers = [
|
||||
FlaxBloomBlock(self.config, name=str(layer_number), dtype=self.dtype)
|
||||
for layer_number in range(self.config.num_hidden_layers)
|
||||
]
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
hidden_states,
|
||||
alibi,
|
||||
attention_mask=None,
|
||||
deterministic: bool = True,
|
||||
init_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
output_hidden_states: bool = False,
|
||||
):
|
||||
all_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
for layer_number in range(self.config.num_hidden_layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
layer_outputs = self.layers[layer_number](
|
||||
hidden_states,
|
||||
alibi=alibi,
|
||||
attention_mask=attention_mask,
|
||||
deterministic=deterministic,
|
||||
init_cache=init_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if output_attentions:
|
||||
all_attentions += (layer_outputs[1],)
|
||||
|
||||
# this contains possible `None` values - `FlaxBloomModule` will filter them out
|
||||
outputs = (hidden_states, all_hidden_states, all_attentions)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class FlaxBloomModule(nn.Module):
|
||||
config: BloomConfig
|
||||
dtype: jnp.dtype = jnp.float32
|
||||
|
||||
def setup(self):
|
||||
self.embed_dim = self.config.hidden_size
|
||||
|
||||
# word embeddings (no positional embedding layer)
|
||||
self.word_embeddings = nn.Embed(
|
||||
self.config.vocab_size,
|
||||
self.embed_dim,
|
||||
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
||||
dtype=self.dtype,
|
||||
)
|
||||
|
||||
# post-embedding layernorm
|
||||
self.word_embeddings_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
||||
|
||||
# transformer layers
|
||||
self.h = FlaxBloomBlockCollection(self.config, dtype=self.dtype)
|
||||
|
||||
# final layernorm
|
||||
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
deterministic=True,
|
||||
init_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
output_hidden_states: bool = False,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
# do post-embedding layernorm
|
||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||
|
||||
# build alibi depending on `attention_mask`
|
||||
alibi = build_alibi_tensor(attention_mask, self.config.n_head, dtype=hidden_states.dtype)
|
||||
|
||||
outputs = self.h(
|
||||
hidden_states,
|
||||
alibi=alibi,
|
||||
attention_mask=attention_mask,
|
||||
deterministic=deterministic,
|
||||
init_cache=init_cache,
|
||||
output_hidden_states=output_hidden_states,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = outputs[1] + (hidden_states,)
|
||||
outputs = (hidden_states, all_hidden_states) + outputs[2:]
|
||||
else:
|
||||
outputs = (hidden_states,) + outputs[1:]
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [outputs[0], outputs[-1]] if v is not None)
|
||||
|
||||
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
hidden_states=outputs[1],
|
||||
attentions=outputs[-1],
|
||||
)
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
BLOOM_START_DOCSTRING,
|
||||
)
|
||||
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoModel with GPTNeo->Bloom
|
||||
class FlaxBloomModel(FlaxBloomPreTrainedModel):
|
||||
module_class = FlaxBloomModule
|
||||
|
||||
|
||||
append_call_sample_docstring(FlaxBloomModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
|
||||
|
||||
|
||||
class FlaxBloomForCausalLMModule(nn.Module):
|
||||
config: BloomConfig
|
||||
dtype: jnp.dtype = jnp.float32
|
||||
|
||||
def setup(self):
|
||||
self.transformer = FlaxBloomModule(self.config, dtype=self.dtype)
|
||||
self.lm_head = nn.Dense(
|
||||
self.config.vocab_size,
|
||||
use_bias=False,
|
||||
dtype=self.dtype,
|
||||
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
input_ids,
|
||||
attention_mask,
|
||||
deterministic: bool = True,
|
||||
init_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
output_hidden_states: bool = False,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
outputs = self.transformer(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
deterministic=deterministic,
|
||||
init_cache=init_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
|
||||
if self.config.tie_word_embeddings:
|
||||
shared_kernel = self.transformer.variables["params"]["word_embeddings"]["embedding"].T
|
||||
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
|
||||
else:
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
if not return_dict:
|
||||
return (lm_logits,) + outputs[1:]
|
||||
|
||||
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
||||
embeddings).
|
||||
""",
|
||||
BLOOM_START_DOCSTRING,
|
||||
)
|
||||
class FlaxBloomForCausalLM(FlaxBloomPreTrainedModel):
|
||||
module_class = FlaxBloomForCausalLMModule
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
||||
# initializing the cache
|
||||
batch_size, seq_length = input_ids.shape
|
||||
|
||||
past_key_values = self.init_cache(batch_size, max_length)
|
||||
# Note that usually one would have to put 0's in the attention_mask for
|
||||
# x > input_ids.shape[-1] and x < cache_length. But since Bloom uses a causal mask,
|
||||
# those positions are masked anyway. Thus, we can create a single static attention_mask here,
|
||||
# which is more efficient for compilation
|
||||
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
||||
if attention_mask is not None:
|
||||
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
||||
|
||||
return {
|
||||
"past_key_values": past_key_values,
|
||||
"attention_mask": extended_attention_mask,
|
||||
}
|
||||
|
||||
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
||||
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
||||
return model_kwargs
|
||||
|
||||
|
||||
append_call_sample_docstring(FlaxBloomForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC)
|
@ -194,7 +194,8 @@ class FlaxGPTJAttention(nn.Module):
|
||||
cached_value.value = value
|
||||
num_updated_cache_vectors = query.shape[1]
|
||||
cache_index.value = cache_index.value + num_updated_cache_vectors
|
||||
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
||||
# causal mask for cached decoder self-attention: our single query position should only attend to those key
|
||||
# positions that have already been generated and cached, not the remaining zero elements.
|
||||
pad_mask = jnp.broadcast_to(
|
||||
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
||||
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
||||
|
@ -520,6 +520,27 @@ class FlaxBlenderbotSmallPreTrainedModel(metaclass=DummyObject):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxBloomForCausalLM(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxBloomModel(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxBloomPreTrainedModel(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["flax"])
|
||||
|
||||
|
||||
class FlaxCLIPModel(metaclass=DummyObject):
|
||||
_backends = ["flax"]
|
||||
|
||||
|
@ -487,6 +487,33 @@ class BloomModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixi
|
||||
tokenizer.decode(greedy_output_without_pad[0, :-3], skip_special_tokens=True),
|
||||
)
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
def test_batch_generated_text(self):
|
||||
path_560m = "bigscience/bloom-560m"
|
||||
|
||||
model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").cuda()
|
||||
model = model.eval()
|
||||
tokenizer = BloomTokenizerFast.from_pretrained(path_560m, padding_side="left")
|
||||
|
||||
input_sentences = [
|
||||
"Hello what is",
|
||||
"Running a quick test with the",
|
||||
]
|
||||
inputs = tokenizer(input_sentences, return_tensors="pt", padding=True, truncation=True)
|
||||
generated_ids = model.generate(
|
||||
inputs["input_ids"].cuda(), attention_mask=inputs["attention_mask"], max_length=20
|
||||
)
|
||||
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
|
||||
# these generations match those of the PyTorch model
|
||||
EXPECTED_GENERATIONS = [
|
||||
"Hello what is the best way to get the data from the server? I have tried",
|
||||
"Running a quick test with the following command:\nsudo apt-get install python3\nsudo apt-get install python2",
|
||||
]
|
||||
|
||||
self.assertListEqual(generated_text, EXPECTED_GENERATIONS)
|
||||
|
||||
|
||||
@require_torch
|
||||
class BloomEmbeddingTest(unittest.TestCase):
|
||||
|
251
tests/models/bloom/test_modeling_flax_bloom.py
Normal file
251
tests/models/bloom/test_modeling_flax_bloom.py
Normal file
@ -0,0 +1,251 @@
|
||||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers import BloomConfig, BloomTokenizerFast, is_flax_available
|
||||
from transformers.testing_utils import require_flax, slow
|
||||
|
||||
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
|
||||
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
|
||||
|
||||
|
||||
if is_flax_available():
|
||||
import os
|
||||
|
||||
# The slow tests are often failing with OOM error on GPU
|
||||
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
|
||||
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
|
||||
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
|
||||
|
||||
import jax.numpy as jnp
|
||||
|
||||
from transformers import FlaxBloomForCausalLM, FlaxBloomModel
|
||||
|
||||
|
||||
def prepare_bloom_inputs_dict(config, input_ids, attention_mask=None):
|
||||
if attention_mask is None:
|
||||
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
|
||||
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
||||
|
||||
|
||||
@require_flax
|
||||
class FlaxBloomModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_labels=False,
|
||||
vocab_size=99,
|
||||
hidden_size=16,
|
||||
n_layer=2,
|
||||
n_head=4,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
eos_token_id=2,
|
||||
pad_token_id=1,
|
||||
bos_token_id=0,
|
||||
initializer_range=0.02,
|
||||
apply_residual_connection_post_layernorm=False,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = n_layer
|
||||
self.num_attention_heads = n_head
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout = hidden_dropout
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.eos_token_id = eos_token_id
|
||||
self.pad_token_id = pad_token_id
|
||||
self.bos_token_id = bos_token_id
|
||||
self.initializer_range = initializer_range
|
||||
self.is_encoder_decoder = False
|
||||
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
|
||||
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
|
||||
|
||||
config = BloomConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
n_layer=self.num_hidden_layers,
|
||||
n_head=self.num_attention_heads,
|
||||
hidden_dropout=self.hidden_dropout,
|
||||
attention_dropout=self.attention_probs_dropout_prob,
|
||||
eos_token_id=self.eos_token_id,
|
||||
bos_token_id=self.bos_token_id,
|
||||
pad_token_id=self.pad_token_id,
|
||||
is_encoder_decoder=False,
|
||||
use_cache=False,
|
||||
)
|
||||
inputs_dict = prepare_bloom_inputs_dict(config, input_ids)
|
||||
return config, inputs_dict
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config, inputs_dict = self.prepare_config_and_inputs()
|
||||
return config, inputs_dict
|
||||
|
||||
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
|
||||
max_length = 20
|
||||
model = model_class_name(config)
|
||||
|
||||
input_ids = inputs_dict["input_ids"]
|
||||
attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4")
|
||||
|
||||
past_key_values = model.init_cache(input_ids.shape[0], max_length)
|
||||
|
||||
outputs_cache = model(
|
||||
input_ids[:, :-1],
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
outputs_cache_next = model(
|
||||
input_ids[:, -1:],
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=outputs_cache.past_key_values,
|
||||
)
|
||||
|
||||
outputs = model(input_ids)
|
||||
|
||||
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
|
||||
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
|
||||
|
||||
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
|
||||
max_length = 20
|
||||
model = model_class_name(config)
|
||||
|
||||
input_ids, attention_mask = (
|
||||
inputs_dict["input_ids"],
|
||||
inputs_dict["attention_mask"],
|
||||
)
|
||||
|
||||
attention_mask_cache = jnp.concatenate(
|
||||
[
|
||||
attention_mask,
|
||||
jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])),
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
past_key_values = model.init_cache(input_ids.shape[0], max_length)
|
||||
|
||||
outputs_cache = model(
|
||||
input_ids[:, :-1],
|
||||
attention_mask=attention_mask_cache,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
outputs_cache_next = model(
|
||||
input_ids[:, -1:],
|
||||
past_key_values=outputs_cache.past_key_values,
|
||||
attention_mask=attention_mask_cache,
|
||||
)
|
||||
|
||||
outputs = model(input_ids, attention_mask=attention_mask)
|
||||
|
||||
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
|
||||
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
|
||||
|
||||
|
||||
@require_flax
|
||||
class FlaxBloomModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
|
||||
all_model_classes = (FlaxBloomModel, FlaxBloomForCausalLM) if is_flax_available() else ()
|
||||
all_generative_model_classes = () if is_flax_available() else ()
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = FlaxBloomModelTester(self)
|
||||
|
||||
def test_use_cache_forward(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
||||
for model_class in self.all_model_classes:
|
||||
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
|
||||
|
||||
def test_use_cache_forward_with_attn_mask(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
||||
for model_class in self.all_model_classes:
|
||||
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_class_name in self.all_model_classes:
|
||||
model = model_class_name.from_pretrained("bigscience/bloom-560m")
|
||||
input_ids = np.ones((1, 1)) * model.config.eos_token_id
|
||||
outputs = model(input_ids)
|
||||
self.assertIsNotNone(outputs)
|
||||
|
||||
|
||||
@slow
|
||||
@require_flax
|
||||
class FlaxBloomGenerationTest(unittest.TestCase):
|
||||
all_model_classes = (FlaxBloomForCausalLM) if is_flax_available() else ()
|
||||
all_generative_model_classes = () if is_flax_available() else ()
|
||||
|
||||
def setUp(self):
|
||||
self.model_id = "bigscience/bloom-560m"
|
||||
self.tokenizer = BloomTokenizerFast.from_pretrained(self.model_id, padding_side="left")
|
||||
self.model_tester = FlaxBloomModelTester(self)
|
||||
self.model = FlaxBloomForCausalLM.from_pretrained(self.model_id, from_pt=True, revision="gs555750")
|
||||
|
||||
def test_model_batched_gen(self):
|
||||
# tests if the model outputs the same generation for the same batched input
|
||||
input_sentences = [
|
||||
"Hello there is this string is definitely longer I believe that",
|
||||
"Hello there is this string is definitely longer I believe that",
|
||||
]
|
||||
inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True)
|
||||
sequences_fx = self.model.generate(**inputs, max_length=20).sequences
|
||||
self.assertEqual(sequences_fx[0].tolist(), sequences_fx[1].tolist())
|
||||
|
||||
def test_model_batched_padding_left(self):
|
||||
# tests if the model outputs the same generation for an input that is part of a batch
|
||||
# and a single input
|
||||
input_sentences_batch = [
|
||||
"Hello there is this string is definitely longer I believe that",
|
||||
"Hi I want to order",
|
||||
]
|
||||
inputs = self.tokenizer(input_sentences_batch, return_tensors="np", padding=True, truncation=True)
|
||||
sequences_fx_batch = self.model.generate(**inputs, max_length=20).sequences
|
||||
|
||||
input_sentence_simple = "Hi I want to order"
|
||||
inputs_simple = self.tokenizer(input_sentence_simple, return_tensors="np")
|
||||
sequences_fx_simple = self.model.generate(**inputs_simple, max_length=20).sequences
|
||||
|
||||
self.assertEqual(sequences_fx_batch[1][6:].tolist(), sequences_fx_simple[0][:-6].tolist())
|
||||
|
||||
def test_batch_generated_text(self):
|
||||
input_sentences = [
|
||||
"Hello what is",
|
||||
"Running a quick test with the",
|
||||
]
|
||||
inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True)
|
||||
generated_ids = self.model.generate(**inputs, max_length=20).sequences
|
||||
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
|
||||
# these generations match those of the PyTorch model, ensuring correctness
|
||||
EXPECTED_GENERATIONS = [
|
||||
"Hello what is the best way to get the data from the server? I have tried",
|
||||
"Running a quick test with the following command:\nsudo apt-get install python3\nsudo apt-get install python2",
|
||||
]
|
||||
|
||||
self.assertListEqual(generated_text, EXPECTED_GENERATIONS)
|
Loading…
Reference in New Issue
Block a user