mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
🌐 [i18n-ZH] Translate tflite.md into Chinese (#27134)
* docs(zh): translate tflite.md * docs(zh): add space around links * Update docs/source/zh/tflite.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
This commit is contained in:
parent
113ebf80ac
commit
7d8ff3629b
@ -29,4 +29,6 @@
|
||||
title: 共享自定义模型
|
||||
- local: serialization
|
||||
title: 导出为 ONNX
|
||||
- local: tflite
|
||||
title: 导出为 TFLite
|
||||
title: 开发者指南
|
||||
|
54
docs/source/zh/tflite.md
Normal file
54
docs/source/zh/tflite.md
Normal file
@ -0,0 +1,54 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# 导出为 TFLite
|
||||
|
||||
[TensorFlow Lite](https://www.tensorflow.org/lite/guide) 是一个轻量级框架,用于资源受限的设备上,如手机、嵌入式系统和物联网(IoT)设备,部署机器学习模型。TFLite 旨在在计算能力、内存和功耗有限的设备上优化和高效运行模型。模型以一种特殊的高效可移植格式表示,其文件扩展名为 `.tflite`。
|
||||
|
||||
🤗 Optimum 通过 `exporters.tflite` 模块提供将 🤗 Transformers 模型导出至 TFLite 格式的功能。请参考 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/tflite/overview) 以获取支持的模型架构列表。
|
||||
|
||||
要将模型导出为 TFLite 格式,请安装所需的依赖项:
|
||||
|
||||
```bash
|
||||
pip install optimum[exporters-tf]
|
||||
```
|
||||
|
||||
请参阅 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model) 以查看所有可用参数,或者在命令行中查看帮助:
|
||||
|
||||
```bash
|
||||
optimum-cli export tflite --help
|
||||
```
|
||||
|
||||
运行以下命令,以从 🤗 Hub 导出模型的检查点(checkpoint),以 `bert-base-uncased` 为例:
|
||||
|
||||
```bash
|
||||
optimum-cli export tflite --model bert-base-uncased --sequence_length 128 bert_tflite/
|
||||
```
|
||||
|
||||
你应该能在日志中看到导出进度以及生成的 `model.tflite` 文件的保存位置,如下所示:
|
||||
|
||||
```bash
|
||||
Validating TFLite model...
|
||||
-[✓] TFLite model output names match reference model (logits)
|
||||
- Validating TFLite Model output "logits":
|
||||
-[✓] (1, 128, 30522) matches (1, 128, 30522)
|
||||
-[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05)
|
||||
The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05:
|
||||
- logits: max diff = 5.817413330078125e-05.
|
||||
The exported model was saved at: bert_tflite
|
||||
```
|
||||
|
||||
上面的示例说明了从 🤗 Hub 导出检查点的过程。导出本地模型时,首先需要确保将模型的权重和分词器文件保存在同一目录(`local_path`)中。在使用 CLI(命令行)时,将 `local_path` 传递给 `model` 参数,而不是 🤗 Hub 上的检查点名称。
|
Loading…
Reference in New Issue
Block a user