Add LLaVa-1.6, bis (#29586)

* First draft

* Fix tests, add docs

* Improve docstrings

* Fix test

* Address comments

* Address comments

* Remove vocab_size attribute

* Remove batch_size

* Address comment

* Add image processor tests

* Support fx

* Update docstring

* Add support for 34b

* Convert 34b model

* Add integration tests

* Update checkpoints

* Convert vicuna-13b, remove doc tests

* Remove script

* Remove file

* Address comments

* Improve docstrings

* Deprecate vocab_size

* Remove aspect_ratio_setting

* Address comments

* Update READMEs

* Add tips about chat templates

* Fix tests

* Deprecate vocab_size safely

* Update tests

---------

Co-authored-by: Amy Roberts <22614925+amyeroberts@users.noreply.github.com>
This commit is contained in:
NielsRogge 2024-03-20 16:51:12 +01:00 committed by GitHub
parent 9d999481b2
commit d91fd7f92c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
43 changed files with 3360 additions and 80 deletions

View File

@ -409,6 +409,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.

View File

@ -405,6 +405,7 @@ Aktuelle Anzahl der Checkpoints: ![](https://img.shields.io/endpoint?url=https:/
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.

View File

@ -382,6 +382,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.

View File

@ -325,7 +325,7 @@ Nombre actuel de points de contrôle : ![](https://img.shields.io/endpoint?url=h
1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** publié dans l'article [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) par James Betker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (de Salesforce) publié dans l'article [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) par Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (de MetaAI) publié dans l'article [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) par Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (de Cohere) publié dans l'article [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) parCohere.
1. **[Cohere](https://huggingface.co/docs/transformers/model_doc/cohere)** (de Cohere) publié dans l'article [Command-R: Retrieval Augmented Generation at Production Scale](<https://txt.cohere.com/command-r/>) parCohere.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (de Microsoft Research Asia) publié dans l'article [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) par Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (de YituTech) publié dans l'article [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) par Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (de Facebook AI) publié dans l'article [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) par Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
@ -403,6 +403,7 @@ Nombre actuel de points de contrôle : ![](https://img.shields.io/endpoint?url=h
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (de l'équipe FAIR de Meta AI) a été publié dans l'article [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) de Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (de l'équipe FAIR de Meta AI) a été publié dans l'article [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) de Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (de Microsoft Research & University of Wisconsin-Madison) a été publié dans l'article [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) de Haotian Liu, Chunyuan Li, Yuheng Li et Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (de Microsoft Research & University of Wisconsin-Madison) publié dans l'article [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) parHaotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (d'AllenAI) a été publié dans l'article [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) de Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (de Google AI) a été publié dans l'article [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) de Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (de Studio Ousia) a été publié dans l'article [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) de Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
@ -490,7 +491,7 @@ Nombre actuel de points de contrôle : ![](https://img.shields.io/endpoint?url=h
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (de Facebook), publié dans l'article [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) par Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (de l'Université de Tel Aviv), publié dans l'article [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) par Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (de Berkeley) a été publié dans l'article [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) par Forrest N. Iandola, Albert E. Shaw, Ravi Krishna et Kurt W. Keutzer.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm)** (from Stability AI) released with the paper [StableLM 3B 4E1T (Technical Report)](https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-3B-4E1T--VmlldzoyMjU4?accessToken=u3zujipenkx5g7rtcj9qojjgxpconyjktjkli2po09nffrffdhhchq045vp0wyfo) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
1. **[Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2)** (from BigCode team) released with the paper [StarCoder 2 and The Stack v2: The Next Generation](https://arxiv.org/abs/2402.19173) by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
1. **[SuperPoint](https://huggingface.co/docs/transformers/model_doc/superpoint)** (de MagicLeap) publié dans l'article [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) parDaniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (de MBZUAI) a été publié dans l'article [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) par Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.

View File

@ -356,6 +356,7 @@ conda install conda-forge::transformers
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI से) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. द्वाराअनुसंधान पत्र [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) के साथ जारी किया गया
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI से) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. द्वाराअनुसंधान पत्र [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) के साथ जारी किया गया
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison से) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. द्वाराअनुसंधान पत्र [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) के साथ जारी किया गया
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison से) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. द्वाराअनुसंधान पत्र [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) के साथ जारी किया गया
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (मैंडी गुओ, जोशुआ आइंस्ली, डेविड यूथस, सैंटियागो ओंटानन, जियानमो नि, यूं-हुआन सुंग, यिनफेई यांग द्वारा पोस्ट किया गया।
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (स्टूडियो औसिया से) साथ में पेपर [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto द्वारा।

View File

@ -416,6 +416,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI から) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. から公開された研究論文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI から) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. から公開された研究論文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison から) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. から公開された研究論文 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485)
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison から) Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. から公開された研究論文 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744)
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI から) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang から公開された研究論文: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916)
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia から) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto から公開された研究論文: [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057)

View File

@ -331,6 +331,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..의 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)논문과 함께 발표했습니다.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison 에서 제공)은 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.의 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485)논문과 함께 발표했습니다.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (Microsoft Research & University of Wisconsin-Madison 에서 제공)은 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.의 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744)논문과 함께 발표했습니다.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다.

View File

@ -414,6 +414,7 @@ Número atual de pontos de verificação: ![](https://img.shields.io/endpoint?ur
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.

View File

@ -404,6 +404,7 @@ conda install conda-forge::transformers
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.

View File

@ -406,6 +406,7 @@ Flax, PyTorch లేదా TensorFlow యొక్క ఇన్‌స్టా
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.

View File

@ -405,6 +405,7 @@ Số lượng điểm kiểm tra hiện tại: ![](https://img.shields.io/endpoi
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (từ The FAIR team of Meta AI) được phát hành với bài báo [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (từ The FAIR team of Meta AI) được phát hành với bài báo [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (từ Microsoft Research & University of Wisconsin-Madison) được phát hành với bài báo [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (từ Microsoft Research & University of Wisconsin-Madison) được phát hành với bài báo [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (từ AllenAI) được phát hành với bài báo [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (từ Google AI) được phát hành với bài báo [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (từ Studio Ousia) được phát hành với bài báo [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.

View File

@ -355,6 +355,7 @@ conda install conda-forge::transformers
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (来自 The FAIR team of Meta AI) 伴随论文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) 由 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 发布。
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (来自 Microsoft Research & University of Wisconsin-Madison) 伴随论文 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) 由 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee 发布。
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (来自 Microsoft Research & University of Wisconsin-Madison) 伴随论文 [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) 由 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。

View File

@ -367,6 +367,7 @@ conda install conda-forge::transformers
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[LLaVA-NeXT](https://huggingface.co/docs/transformers/main/model_doc/llava_next)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.

View File

@ -134,7 +134,7 @@
- local: custom_tools
title: Custom Tools and Prompts
- local: troubleshooting
title: Troubleshoot
title: Troubleshoot
- local: hf_quantizer
title: Contribute new quantization method
title: Developer guides
@ -695,7 +695,7 @@
title: VideoMAE
- local: model_doc/vivit
title: ViViT
title: Video models
title: Video models
- isExpanded: false
sections:
- local: model_doc/align
@ -748,6 +748,8 @@
title: LiLT
- local: model_doc/llava
title: Llava
- local: model_doc/llava_next
title: LLaVA-NeXT
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/matcha

View File

@ -174,6 +174,7 @@ Flax), PyTorch, and/or TensorFlow.
| [LLaMA](model_doc/llama) | ✅ | ❌ | ✅ |
| [Llama2](model_doc/llama2) | ✅ | ❌ | ✅ |
| [LLaVa](model_doc/llava) | ✅ | ❌ | ❌ |
| [LLaVA-NeXT](model_doc/llava_next) | ✅ | ❌ | ❌ |
| [Longformer](model_doc/longformer) | ✅ | ✅ | ❌ |
| [LongT5](model_doc/longt5) | ✅ | ❌ | ✅ |
| [LUKE](model_doc/luke) | ✅ | ❌ | ❌ |

View File

@ -0,0 +1,147 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# LLaVA-NeXT
## Overview
The LLaVA-NeXT model was proposed in [LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/) by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon [LLaVa](llava) by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning.
The introduction from the blog is the following:
*In October 2023, we released LLaVA-1.5 with a simple and efficient design along with great performance on a benchmark suite of 12 datasets. It has since served as the foundation of many comprehensive studies of data, model, and capabilities of large multimodal models (LMM), and has enabled various new applications.
Today, we are thrilled to present LLaVA-NeXT, with improved reasoning, OCR, and world knowledge. LLaVA-NeXT even exceeds Gemini Pro on several benchmarks.
Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:
Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution.
Better visual reasoning and OCR capability with an improved visual instruction tuning data mixture.
Better visual conversation for more scenarios, covering different applications. Better world knowledge and logical reasoning.
Efficient deployment and inference with SGLang.
Along with performance improvements, LLaVA-NeXT maintains the minimalist design and data efficiency of LLaVA-1.5. It re-uses the pretrained connector of LLaVA-1.5, and still uses less than 1M visual instruction tuning samples. The largest 34B variant finishes training in ~1 day with 32 A100s.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_next_overview.png"
alt="drawing" width="600"/>
<small> LLaVa-NeXT incorporates a higher input resolution by encoding various patches of the input image. Taken from the <a href="https://arxiv.org/abs/2310.03744">original paper.</a> </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/main).
## Usage tips
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.
- Note that each checkpoint has been trained with a specific prompt format, depending on which large language model (LLM) was used. Below, we list the correct prompt formats to use for the text prompt "What is shown in this image?":
[llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) requires the following format:
```bash
"[INST] <image>\nWhat is shown in this image? [/INST]"
```
[llava-v1.6-vicuna-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf) and [llava-v1.6-vicuna-13b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) require the following format:
```bash
"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:"
```
[llava-v1.6-34b-hf](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) requires the following format:
```bash
"<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
```
## Usage example
Here's how to load the model and perform inference in half-precision (`torch.float16`):
```python
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
from PIL import Image
import requests
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
model.to("cuda:0")
# prepare image and text prompt, using the appropriate prompt template
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
```
## Model optimization
### Quantization using Bitsandbytes
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes`` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```python
from transformers import LlavaNextForConditionalGeneration, BitsandBytesConfig
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="torch.float16",
)
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", quantization_config=quantization_config, device_map="auto")
```
### Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```python
from transformers import LlavaNextForConditionalGeneration
model = LlavaNextForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_flash_attention_2=True
).to(0)
```
## LlavaNextConfig
[[autodoc]] LlavaNextConfig
## LlavaNextImageProcessor
[[autodoc]] LlavaNextImageProcessor
- preprocess
## LlavaNextProcessor
[[autodoc]] LlavaNextProcessor
## LlavaNextForConditionalGeneration
[[autodoc]] LlavaNextForConditionalGeneration
- forward

View File

@ -49,6 +49,7 @@ FlashAttention-2 is currently supported for the following architectures:
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Llava](https://huggingface.co/docs/transformers/model_doc/llava)
* [Llava-NeXT](https://huggingface.co/docs/transformers/model_doc/llava_next)
* [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)
* [MBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel)
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)

View File

@ -555,6 +555,12 @@ _import_structure = {
"models.llava": [
"LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
"LlavaConfig",
"LlavaProcessor",
],
"models.llava_next": [
"LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"LlavaNextConfig",
"LlavaNextProcessor",
],
"models.longformer": [
"LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
@ -1323,6 +1329,7 @@ else:
_import_structure["models.layoutlmv2"].extend(["LayoutLMv2FeatureExtractor", "LayoutLMv2ImageProcessor"])
_import_structure["models.layoutlmv3"].extend(["LayoutLMv3FeatureExtractor", "LayoutLMv3ImageProcessor"])
_import_structure["models.levit"].extend(["LevitFeatureExtractor", "LevitImageProcessor"])
_import_structure["models.llava_next"].append("LlavaNextImageProcessor")
_import_structure["models.mask2former"].append("Mask2FormerImageProcessor")
_import_structure["models.maskformer"].extend(["MaskFormerFeatureExtractor", "MaskFormerImageProcessor"])
_import_structure["models.mobilenet_v1"].extend(["MobileNetV1FeatureExtractor", "MobileNetV1ImageProcessor"])
@ -2535,7 +2542,13 @@ else:
"LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
"LlavaForConditionalGeneration",
"LlavaPreTrainedModel",
"LlavaProcessor",
]
)
_import_structure["models.llava_next"].extend(
[
"LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"LlavaNextForConditionalGeneration",
"LlavaNextPreTrainedModel",
]
)
_import_structure["models.longformer"].extend(
@ -5416,6 +5429,12 @@ if TYPE_CHECKING:
from .models.llava import (
LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
LlavaConfig,
LlavaProcessor,
)
from .models.llava_next import (
LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
LlavaNextConfig,
LlavaNextProcessor,
)
from .models.longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
@ -6165,6 +6184,7 @@ if TYPE_CHECKING:
LayoutLMv3ImageProcessor,
)
from .models.levit import LevitFeatureExtractor, LevitImageProcessor
from .models.llava_next import LlavaNextImageProcessor
from .models.mask2former import Mask2FormerImageProcessor
from .models.maskformer import (
MaskFormerFeatureExtractor,
@ -7194,7 +7214,11 @@ if TYPE_CHECKING:
LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
LlavaForConditionalGeneration,
LlavaPreTrainedModel,
LlavaProcessor,
)
from .models.llava_next import (
LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
LlavaNextForConditionalGeneration,
LlavaNextPreTrainedModel,
)
from .models.longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,

View File

@ -124,6 +124,7 @@ from . import (
lilt,
llama,
llava,
llava_next,
longformer,
longt5,
luke,

View File

@ -133,6 +133,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("lilt", "LiltConfig"),
("llama", "LlamaConfig"),
("llava", "LlavaConfig"),
("llava_next", "LlavaNextConfig"),
("longformer", "LongformerConfig"),
("longt5", "LongT5Config"),
("luke", "LukeConfig"),
@ -374,6 +375,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
("lilt", "LILT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("llama", "LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("llava", "LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("llava_next", "LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("longformer", "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("longt5", "LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("luke", "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
@ -619,6 +621,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("llama", "LLaMA"),
("llama2", "Llama2"),
("llava", "LLaVa"),
("llava_next", "LLaVA-NeXT"),
("longformer", "Longformer"),
("longt5", "LongT5"),
("luke", "LUKE"),

View File

@ -77,6 +77,7 @@ IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
("layoutlmv3", "LayoutLMv3ImageProcessor"),
("levit", "LevitImageProcessor"),
("llava", "CLIPImageProcessor"),
("llava_next", "CLIPImageProcessor"),
("mask2former", "Mask2FormerImageProcessor"),
("maskformer", "MaskFormerImageProcessor"),
("mgp-str", "ViTImageProcessor"),

View File

@ -286,6 +286,7 @@ MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
("idefics", "IdeficsForVisionText2Text"),
("layoutlm", "LayoutLMForMaskedLM"),
("llava", "LlavaForConditionalGeneration"),
("llava_next", "LlavaNextForConditionalGeneration"),
("longformer", "LongformerForMaskedLM"),
("luke", "LukeForMaskedLM"),
("lxmert", "LxmertForPreTraining"),
@ -675,6 +676,7 @@ MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict(
("instructblip", "InstructBlipForConditionalGeneration"),
("kosmos-2", "Kosmos2ForConditionalGeneration"),
("llava", "LlavaForConditionalGeneration"),
("llava_next", "LlavaNextForConditionalGeneration"),
("pix2struct", "Pix2StructForConditionalGeneration"),
("vipllava", "VipLlavaForConditionalGeneration"),
("vision-encoder-decoder", "VisionEncoderDecoderModel"),

View File

@ -66,6 +66,7 @@ PROCESSOR_MAPPING_NAMES = OrderedDict(
("layoutlmv2", "LayoutLMv2Processor"),
("layoutlmv3", "LayoutLMv3Processor"),
("llava", "LlavaProcessor"),
("llava_next", "LlavaNextProcessor"),
("markuplm", "MarkupLMProcessor"),
("mctct", "MCTCTProcessor"),
("mgp-str", "MgpstrProcessor"),

View File

@ -223,6 +223,7 @@ else:
),
),
("llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava_next", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
(
"longt5",

View File

@ -16,7 +16,10 @@ from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {"configuration_llava": ["LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlavaConfig"]}
_import_structure = {
"configuration_llava": ["LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlavaConfig"],
"processing_llava": ["LlavaProcessor"],
}
try:
@ -30,11 +33,11 @@ else:
"LlavaForConditionalGeneration",
"LlavaPreTrainedModel",
]
_import_structure["processing_llava"] = ["LlavaProcessor"]
if TYPE_CHECKING:
from .configuration_llava import LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlavaConfig
from .processing_llava import LlavaProcessor
try:
if not is_torch_available():
@ -47,8 +50,6 @@ if TYPE_CHECKING:
LlavaForConditionalGeneration,
LlavaPreTrainedModel,
)
from .processing_llava import LlavaProcessor
else:
import sys

View File

@ -13,6 +13,8 @@
# limitations under the License.
""" Llava model configuration"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
@ -37,10 +39,10 @@ class LlavaConfig(PretrainedConfig):
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`LlavaVisionConfig`, *optional*):
Custom vision config or dict
text_config (`Union[AutoConfig, dict]`, *optional*):
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32000):
@ -48,12 +50,10 @@ class LlavaConfig(PretrainedConfig):
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the CLIP backbone.
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~LlavaForConditionalGeneration`]
Example:
@ -88,25 +88,34 @@ class LlavaConfig(PretrainedConfig):
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
vocab_size=32000,
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
if "vocab_size" in kwargs:
warnings.warn(
"The `vocab_size` argument is deprecated and will be removed in v4.42, since it can be inferred from the `text_config`. Passing this argument has no effect",
FutureWarning,
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.vocab_size = vocab_size
self.vision_config = vision_config
if isinstance(self.vision_config, dict):
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
self.vision_config = CONFIG_MAPPING["clip_vision_model"](
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
@ -116,15 +125,29 @@ class LlavaConfig(PretrainedConfig):
vocab_size=32000,
projection_dim=768,
)
self.vocab_size = self.vocab_size
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
self.text_config = text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
self.vocab_size = self.text_config.vocab_size
elif text_config is None:
self.text_config = CONFIG_MAPPING["llama"]()
self._vocab_size = self.text_config.vocab_size
super().__init__(**kwargs)
@property
def vocab_size(self):
warnings.warn(
"The `vocab_size` attribute is deprecated and will be removed in v4.42, Please use `text_config.vocab_size` instead.",
FutureWarning,
)
return self._vocab_size
def to_dict(self):
output = super().to_dict()
output.pop("_vocab_size", None)
return output

View File

@ -216,6 +216,11 @@ LLAVA_INPUTS_DOCSTRING = r"""
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
@ -240,7 +245,7 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = LlavaMultiModalProjector(config)
self.vocab_size = config.vocab_size
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
@ -272,7 +277,6 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
@ -433,38 +437,38 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
)
if labels is None:
labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
else:
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
# generation with cache
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
# Retrieve the first layer to inspect the logits and mask out the hidden states
# that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
# generation with cache
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
# Retrieve the first layer to inspect the logits and mask out the hidden states
# that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Get the target length
target_seqlen = first_layer_past_key_value.shape[-1] + 1
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
extended_attention_mask = torch.ones(
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Get the target length
target_seqlen = first_layer_past_key_value.shape[-1] + 1
# Filter out only the tokens that can be un-attended, this can happen
# if one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
extended_attention_mask = torch.ones(
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
# Filter out only the tokens that can be un-attended, this can happen
# if one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
outputs = self.language_model(
attention_mask=attention_mask,

View File

@ -0,0 +1,74 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_llava_next": ["LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlavaNextConfig"],
"processing_llava_next": ["LlavaNextProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_llava_next"] = [
"LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"LlavaNextForConditionalGeneration",
"LlavaNextPreTrainedModel",
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_llava_next"] = ["LlavaNextImageProcessor"]
if TYPE_CHECKING:
from .configuration_llava_next import LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, LlavaNextConfig
from .processing_llava_next import LlavaNextProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llava_next import (
LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
LlavaNextForConditionalGeneration,
LlavaNextPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_llava_next import LlavaNextImageProcessor
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)

View File

@ -0,0 +1,141 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Llava-NeXT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"llava-hf/llava-v1.6-mistral-7b-hf": "https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf/resolve/main/config.json",
}
class LlavaNextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LlavaNextForConditionalGeneration`]. It is used to instantiate an
Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)
model.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32000):
The image token index to encode the image prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`):
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
of the form `(height, width)`.
Example:
```python
>>> from transformers import LlavaNextForConditionalGeneration, LlavaNextConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a Llava-Next llava-hf/llava-v1.6-mistral-7b-hf style configuration
>>> configuration = LlavaNextConfig(vision_config, text_config)
>>> # Initializing a model from the llava-hf/llava-v1.6-mistral-7b-hf style configuration
>>> model = LlavaNextForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llava_next"
is_composition = False
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32000,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
image_grid_pinpoints=None,
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
image_grid_pinpoints = (
image_grid_pinpoints
if image_grid_pinpoints is not None
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
)
self.image_grid_pinpoints = image_grid_pinpoints
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
self.text_config = text_config
super().__init__(**kwargs)

View File

@ -0,0 +1,342 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert LLaVa-NeXT (LLaVa-1.6) checkpoints from the original repository.
URL: https://github.com/haotian-liu/LLaVA/tree/main.
The command used to obtain original logits is the following:
python llava/eval/run_llava.py --model-path "liuhaotian/llava-v1.6-mistral-7b" --image-file "images/llava_v1_5_radar.jpg" --query "What is shown in this image?" --max_new_tokens 100 --temperature 0
Note: logits are tested with torch==2.1.2.
"""
import argparse
import glob
import json
from pathlib import Path
import requests
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download, snapshot_download
from PIL import Image
from safetensors import safe_open
from transformers import (
AddedToken,
AutoConfig,
AutoTokenizer,
LlavaNextConfig,
LlavaNextForConditionalGeneration,
LlavaNextImageProcessor,
LlavaNextProcessor,
)
KEYS_TO_MODIFY_MAPPING = {
"model.vision_tower.": "",
"model.mm_projector": "multi_modal_projector",
"model": "model.model",
"vision_model.model": "vision_model",
"lm_head": "language_model.lm_head",
"model.model": "language_model.model",
"multi_modal_projector.0": "multi_modal_projector.linear_1",
"multi_modal_projector.2": "multi_modal_projector.linear_2",
"language_model.model.image_newline": "image_newline",
}
def load_original_state_dict(model_id):
directory_path = snapshot_download(repo_id=model_id, allow_patterns=["*.safetensors"])
original_state_dict = {}
for path in glob.glob(f"{directory_path}/*"):
if path.endswith(".safetensors"):
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
original_state_dict[key] = f.get_tensor(key)
return original_state_dict
def convert_state_dict_to_hf(state_dict):
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith(".inv_freq"):
continue
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
new_state_dict[key] = value.to(torch.float16)
return new_state_dict
def load_image():
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
return image
def convert_llava_to_hf(model_id, pytorch_dump_folder_path, push_to_hub=False):
# load original config
filepath = hf_hub_download(repo_id=model_id, filename="config.json", repo_type="model")
# read json
with open(filepath) as f:
data = json.load(f)
print(data)
if model_id == "liuhaotian/llava-v1.6-mistral-7b":
text_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
image_token_index = 32000
elif model_id == "liuhaotian/llava-v1.6-vicuna-7b":
text_model_id = "lmsys/vicuna-7b-v1.5"
image_token_index = 32000
elif model_id == "liuhaotian/llava-v1.6-vicuna-13b":
text_model_id = "lmsys/vicuna-13b-v1.5"
image_token_index = 32000
elif model_id == "liuhaotian/llava-v1.6-34b":
text_model_id = "NousResearch/Nous-Hermes-2-Yi-34B"
image_token_index = 64000
vision_model_id = data["mm_vision_tower"]
torch.set_default_dtype(torch.float16)
text_config = AutoConfig.from_pretrained(text_model_id)
use_fast = False if model_id == "liuhaotian/llava-v1.6-34b" else True
tokenizer = AutoTokenizer.from_pretrained(text_model_id, use_fast=use_fast)
tokenizer.add_tokens(AddedToken("<image>", special=True, normalized=False), special_tokens=True)
if model_id == "liuhaotian/llava-v1.6-mistral-7b":
# Mistral-7B doesn't have a padding token set yet
tokenizer.add_special_tokens({"pad_token": "<pad>"})
image_processor = LlavaNextImageProcessor.from_pretrained(vision_model_id)
processor = LlavaNextProcessor(tokenizer=tokenizer, image_processor=image_processor)
config = LlavaNextConfig(
text_config=text_config.to_dict(),
image_grid_pinpoints=image_processor.image_grid_pinpoints,
use_image_newline_parameter=True,
image_token_index=image_token_index,
)
with init_empty_weights():
model = LlavaNextForConditionalGeneration(config)
# load original state dict
state_dict = load_original_state_dict(model_id)
state_dict = convert_state_dict_to_hf(state_dict)
model.load_state_dict(state_dict, assign=True)
model.eval()
pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data
mu = torch.mean(pre_expansion_embeddings, dim=0).float()
n = pre_expansion_embeddings.size()[0]
sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n
dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma)
# We add an image token so we resize the model
# Pad to 64 for performance reasons
pad_shape = 64
vocab_size = config.text_config.vocab_size
if model_id == "liuhaotian/llava-v1.6-34b":
# this one has 3 additional tokens, namely <|startoftext|>, <|endoftext|> and <image>
num_tokens = vocab_size + 3
else:
# this one has 2 additional tokens, namely <image> and <pad>
num_tokens = vocab_size + 2
model.resize_token_embeddings(num_tokens, pad_to_multiple_of=pad_shape)
model.language_model.model.embed_tokens.weight.data[vocab_size:] = torch.stack(
tuple(
(dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[vocab_size:].shape[0]))
),
dim=0,
)
model.language_model.lm_head.weight.data[vocab_size:] = torch.stack(
tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[vocab_size:].shape[0]))),
dim=0,
)
device = "cuda:2"
model.to(device)
# prepare inputs
image = load_image()
if model_id == "liuhaotian/llava-v1.6-mistral-7b":
prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
elif model_id in ["liuhaotian/llava-v1.6-vicuna-7b", "liuhaotian/llava-v1.6-vicuna-13b"]:
prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:"
elif model_id == "liuhaotian/llava-v1.6-34b":
prompt = "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
inputs = processor(images=image, text=prompt, return_tensors="pt")
# verify inputs
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="llava_1_6_pixel_values.pt", repo_type="dataset")
original_pixel_values = torch.load(filepath, map_location="cpu")
assert torch.allclose(original_pixel_values, inputs.pixel_values.half())
if model_id == "liuhaotian/llava-v1.6-mistral-7b":
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="llava_1_6_input_ids.pt", repo_type="dataset")
original_input_ids = torch.load(filepath, map_location="cpu")
# replace -200 by image_token_index (since we use token ID = 32000 for the image token)
original_input_ids[original_input_ids == -200] = image_token_index
print(tokenizer.decode([id for id in original_input_ids.tolist()[0] if id != -200]))
assert original_input_ids[0].tolist() == inputs.input_ids[0].tolist()
elif model_id == "liuhaotian/llava-v1.6-34b":
filepath = hf_hub_download(
repo_id="nielsr/test-image", filename="llava_1_6_34b_input_ids.pt", repo_type="dataset"
)
original_input_ids = torch.load(filepath, map_location="cpu")
# replace -200 by image_token_index
original_input_ids[original_input_ids == -200] = image_token_index
assert original_input_ids[0].tolist() == inputs.input_ids[0].tolist()
image_sizes = torch.tensor([[899, 1024]])
assert image_sizes[0].tolist() == inputs.image_sizes[0].tolist()
# verify single forward pass
print("Single forward pass")
with torch.inference_mode():
inputs = inputs.to(device)
outputs = model(**inputs)
print("Shape of logits:", outputs.logits.shape)
print("First values of logits:", outputs.logits[0, :3, :3])
if model_id == "liuhaotian/llava-v1.6-mistral-7b":
expected_slice = torch.tensor(
[[-4.8555, -4.6992, -0.1996], [-10.5703, -10.7344, -2.7246], [-7.0391, -7.3672, -0.2634]],
dtype=torch.float32,
device=device,
)
elif model_id == "liuhaotian/llava-v1.6-vicuna-7b":
expected_slice = torch.tensor(
[[1.4883, 0.9976, -0.6992], [-9.7031, -5.7031, -1.5557], [-5.1328, -5.5586, 8.8281]],
dtype=torch.float32,
device=device,
)
elif model_id == "liuhaotian/llava-v1.6-vicuna-13b":
expected_slice = torch.tensor(
[[-0.9614, 7.3125, 0.2106], [-7.2695, -8.5469, 3.6211], [-6.3750, -8.1875, 5.4688]],
dtype=torch.float32,
device=device,
)
elif model_id == "liuhaotian/llava-v1.6-34b":
expected_slice = torch.tensor(
[[-9.0859, -9.1406, 5.9453], [-5.9570, -5.9766, 2.2754], [-5.7305, -5.7539, 4.0000]],
dtype=torch.float32,
device=device,
)
else:
raise ValueError(f"Model {model_id} not supported")
assert torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)
print("Logits are ok!")
# verify generation
output_ids = model.generate(
**inputs,
max_new_tokens=100,
use_cache=True,
)
generated_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print("Generated text:", repr(generated_text))
if model_id == "liuhaotian/llava-v1.6-mistral-7b":
expected_text = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point.\n\nIn this particular radar chart, there are several axes labeled with different metrics or benchmarks, such as "MMM-Vet," "MMM-Bench," "LLaVA-Bench," "SLED-Bench," "'
elif model_id == "liuhaotian/llava-v1.6-vicuna-7b":
expected_text = """A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human\'s questions. USER: \nWhat is shown in this image? ASSISTANT: The image appears to be a graphical representation of a benchmarking study comparing the performance of various models or systems. It\'s a scatter plot with a circular layout, where each point represents a different model or system, and the axes represent different metrics or dimensions of comparison.\n\nThe metrics are likely related to machine learning or artificial intelligence performance, as indicated by the terms like "BLIP-2," "Instruct BLIP," "POE," "QWA," "V"""
elif model_id == "liuhaotian/llava-v1.6-vicuna-13b":
expected_text = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: \nWhat is shown in this image? ASSISTANT: The image appears to be a radar chart, also known as a spider chart or star chart, which is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point.\n\nIn this particular radar chart, there are several variables represented:\n\n- MM-Vet\n- LLa-Va-Bench\n- SEED-Bench\n- MM"
elif model_id == "liuhaotian/llava-v1.6-34b":
expected_text = "<|im_start|> system\nAnswer the questions. <|im_start|> user\n\nWhat is shown in this image? <|im_start|> assistant\nThe image appears to be a radar chart, also known as a spider chart, which is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point.\n\nIn this particular chart, there are several datasets represented by different colors and labeled with various acronyms such as MM-Vet, LLaVA-Bench, SEED-Bench, MM-Bench-CN, MM-"
else:
raise ValueError(f"Model {model_id} not supported")
assert generated_text == expected_text
print("Generated text is ok!")
# verify batched generation
print("Batched generation...")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
cats_image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(
images=[image, cats_image],
text=[prompt, "[INST] <image>\nHow many cats are there? [/INST]"],
padding=True,
return_tensors="pt",
).to(device)
for k, v in inputs.items():
print(k, v.shape)
print("Image sizes:", inputs.image_sizes)
# make sure image_sizes are the same
# as otherwise batched generation doesn't work
inputs.image_sizes[1] = inputs.image_sizes[0]
print("Batched generation...")
output_ids = model.generate(
**inputs,
max_new_tokens=20,
use_cache=True,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
print(outputs)
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor for {model_id} to {pytorch_dump_folder_path}")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
repo_id = model_id.split("/")[-1]
model.push_to_hub(f"llava-hf/{repo_id}-hf")
processor.push_to_hub(f"llava-hf/{repo_id}-hf")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
help="Hub location of the model to convert",
default="liuhaotian/llava-v1.6-mistral-7b",
choices=[
"liuhaotian/llava-v1.6-mistral-7b",
"liuhaotian/llava-v1.6-vicuna-7b",
"liuhaotian/llava-v1.6-vicuna-13b",
"liuhaotian/llava-v1.6-34b",
],
required=False,
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_llava_to_hf(args.model_id, args.pytorch_dump_folder_path, args.push_to_hub)

View File

@ -0,0 +1,646 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for LLaVa-NeXT."""
import math
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
convert_to_rgb,
get_resize_output_image_size,
pad,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__)
if is_vision_available():
from PIL import Image
def select_best_resolution(original_size: tuple, possible_resolutions: list) -> tuple:
"""
Selects the best resolution from a list of possible resolutions based on the original size.
This is done by calculating the effective and wasted resolution for each possible resolution.
The best fit resolution is the one that maximizes the effective resolution and minimizes the wasted resolution.
Args:
original_size (tuple):
The original size of the image in the format (height, width).
possible_resolutions (list):
A list of possible resolutions in the format [(height1, width1), (height2, width2), ...].
Returns:
tuple: The best fit resolution in the format (height, width).
"""
original_height, original_width = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for height, width in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (
effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution
):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (height, width)
return best_fit
def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> List[np.array]:
"""
Divides an image into patches of a specified size.
Args:
image (`np.array`):
The input image.
patch_size (`int`):
The size of each patch.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
list: A list of np.array representing the patches.
"""
patches = []
height, width = get_image_size(image, channel_dim=input_data_format)
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
if input_data_format == ChannelDimension.LAST:
patch = image[i : i + patch_size, j : j + patch_size]
else:
patch = image[:, i : i + patch_size, j : j + patch_size]
patches.append(patch)
return patches
def expand_to_square(image: np.array, background_color, input_data_format) -> np.array:
"""
Expands an image to a square by adding a background color.
"""
height, width = get_image_size(image, channel_dim=input_data_format)
if width == height:
return image
elif width > height:
result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color
result[(width - height) // 2 : (width - height) // 2 + height, :] = image
return result
else:
result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color
result[:, (height - width) // 2 : (height - width) // 2 + width] = image
return result
def _get_patch_output_size(image, target_resolution, input_data_format):
original_height, original_width = get_image_size(image, channel_dim=input_data_format)
target_height, target_width = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
return new_height, new_width
class LlavaNextImageProcessor(BaseImageProcessor):
r"""
Constructs a LLaVa-NeXT image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
for processing high resolution images as explained in the [LLaVa paper](https://arxiv.org/abs/2310.03744).
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
image_grid_pinpoints (`List` *optional*, defaults to `[[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]]`):
A list of possible resolutions to use for processing high resolution images. The best resolution is selected
based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
image_grid_pinpoints: List = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
image_grid_pinpoints = (
image_grid_pinpoints
if image_grid_pinpoints is not None
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.image_grid_pinpoints = image_grid_pinpoints
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize with CLIP->LLaVa
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
default_to_square = True
if "shortest_edge" in size:
size = size["shortest_edge"]
default_to_square = False
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(
image,
size=size,
default_to_square=default_to_square,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def _preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Image.Image:
"""
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
return images
def _resize_for_patching(
self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension
) -> np.array:
"""
Resizes an image to a target resolution while maintaining aspect ratio.
Args:
image (np.array):
The input image.
target_resolution (tuple):
The target resolution (height, width) of the image.
resample (`PILImageResampling`):
Resampling filter to use if resizing the image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
np.array: The resized and padded image.
"""
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
# Resize the image
resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format)
return resized_image
def _pad_for_patching(
self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension
) -> np.array:
"""
Pad an image to a target resolution while maintaining aspect ratio.
"""
target_height, target_width = target_resolution
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
padded_image = pad(image, padding=((paste_y, paste_y), (paste_x, paste_x)))
return padded_image
def get_image_patches(
self,
image: np.array,
grid_pinpoints,
size: tuple,
patch_size: int,
resample: PILImageResampling,
data_format: ChannelDimension,
input_data_format: ChannelDimension,
) -> List[np.array]:
"""
Process an image with variable resolutions by dividing it into patches.
Args:
image (np.array):
The input image to be processed.
grid_pinpoints (List):
A string representation of a list of possible resolutions.
size (`tuple`):
Size to resize the original image to.
patch_size (`int`):
Size of the patches to divide the image into.
resample (`PILImageResampling`):
Resampling filter to use if resizing the image.
data_format (`ChannelDimension` or `str`):
The channel dimension format for the output image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
List[np.array]: A list of NumPy arrays containing the processed image patches.
"""
if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints must be a list of possible resolutions.")
possible_resolutions = grid_pinpoints
image_size = get_image_size(image, channel_dim=input_data_format)
best_resolution = select_best_resolution(image_size, possible_resolutions)
resized_image = self._resize_for_patching(
image, best_resolution, resample=resample, input_data_format=input_data_format
)
padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format)
patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format)
# make sure that all patches are in the input data format
patches = [
to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format)
for patch in patches
]
resized_original_image = resize(
image,
size=size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
)
image_patches = [resized_original_image] + patches
return image_patches
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
image_grid_pinpoints: List = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
image_grid_pinpoints (`List` *optional*, defaults to `self.image_grid_pinpoints`):
A list of possible resolutions to use for processing high resolution images. The best resolution is
selected based on the original size of the image.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
image_grid_pinpoints = image_grid_pinpoints if image_grid_pinpoints is not None else self.image_grid_pinpoints
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
new_images = []
image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images]
for image in images:
# convert image into a list of patches
# we intentially use the same data format as the input data format
image_patches = self.get_image_patches(
image,
image_grid_pinpoints,
size=(size["shortest_edge"], size["shortest_edge"]),
patch_size=crop_size["height"],
resample=resample,
data_format=input_data_format,
input_data_format=input_data_format,
)
# preprocess patches
pixel_values = self._preprocess(
image_patches,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
pixel_values = np.array(pixel_values)
new_images.append(pixel_values)
data = {"pixel_values": new_images, "image_sizes": image_sizes}
return BatchFeature(data=data, tensor_type=return_tensors)

View File

@ -0,0 +1,692 @@
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Llava-NeXT model."""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ... import PreTrainedModel
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...modeling_outputs import ModelOutput
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto import AutoModel, AutoModelForCausalLM
from .configuration_llava_next import LlavaNextConfig
from .image_processing_llava_next import select_best_resolution
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlavaNextConfig"
LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"llava-hf/llava-v1.6-mistral-7b-hf",
# See all LLaVA-NeXT models at https://huggingface.co/models?filter=llava_next
]
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (`tuple`):
The size of the input image in the format (width, height).
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists")
height, width = select_best_resolution(image_size, grid_pinpoints)
return height // patch_size, width // patch_size
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (`torch.Tensor`):
The image tensor, assumed to be of shape (num_channels, height, width).
original_size (`tuple`):
The original size of the image (height, width).
Returns:
`torch.Tensor`: The unpadded image tensor.
"""
original_height, original_width = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding : current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding : current_width - padding]
return unpadded_tensor
@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->LlavaNext
class LlavaNextCausalLMOutputWithPast(ModelOutput):
"""
Base class for LlavaNext causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext
class LlavaNextMultiModalProjector(nn.Module):
def __init__(self, config: LlavaNextConfig):
super().__init__()
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
LLAVA_NEXT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LlavaNextConfig`] or [`LlavaNextVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAVA_NEXT_START_DOCSTRING,
)
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->LlavaNext,llava->llava_next
class LlavaNextPreTrainedModel(PreTrainedModel):
config_class = LlavaNextConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlavaNextVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
# important: this ported version of LlavaNext isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
LLAVA_NEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`LlavaNextImageProcessor.__call__`] for details. [`LlavaProcessor`] uses
[`LlavaNextImageProcessor`] for processing images.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
The sizes of the images in the batch, being (height, width) for each image.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The LLAVA-NeXT model which consists of a vision backbone and a language model.""",
LLAVA_NEXT_START_DOCSTRING,
)
class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel):
def __init__(self, config: LlavaNextConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = LlavaNextMultiModalProjector(config)
self.image_newline = nn.Parameter(torch.empty(config.text_config.hidden_size, dtype=self.dtype))
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.post_init()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
def get_decoder(self):
return self.language_model.get_decoder()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
def tie_weights(self):
return self.language_model.tie_weights()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._merge_input_ids_with_image_features
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
num_images, num_image_patches, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == self.config.image_token_index
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# Compute the maximum embed dimension
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
if left_padding:
new_token_positions += nb_image_pad[:, None] # offset for left padding
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
if labels is not None:
final_labels = torch.full(
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
if labels is not None:
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
raise ValueError(
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
if labels is None:
final_labels = None
return final_embedding, final_attention_mask, final_labels, position_ids
@add_start_docstrings_to_model_forward(LLAVA_NEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=LlavaNextCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
image_sizes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration
>>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if inputs_embeds is None:
# 1. Extract the input embeddings
inputs_embeds = self.get_input_embeddings()(input_ids)
# 2. Merge text and images
if pixel_values is not None and input_ids.shape[1] != 1:
batch_size, num_patches, num_channels, height, width = pixel_values.shape
reshaped_pixel_values = pixel_values.view(batch_size * num_patches, num_channels, height, width)
image_features = self.vision_tower(reshaped_pixel_values, output_hidden_states=True)
selected_image_feature = image_features.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
image_features = self.multi_modal_projector(selected_image_feature)
# split up image_features for each of the individual images
# hence we get a list of image_features, each of shape (5, num_patches, hidden_size)
# if we assume each image has 5 image features (base image + 4 patches)
split_sizes = [image.shape[0] for image in pixel_values]
image_features = torch.split(image_features, split_sizes, dim=0)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
if height * width != base_image_feature.shape[0]:
raise ValueError("The number of patches is not consistent with the image size.")
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat(
(
image_feature,
self.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
image_feature = torch.cat((image_feature, self.image_newline[None]), dim=0)
new_image_features.append(image_feature)
image_features = torch.stack(new_image_features, dim=0)
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, labels
)
if labels is None:
labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
# generation with cache
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
# Retrieve the first layer to inspect the logits and mask out the hidden states
# that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
# Get the target length
target_seqlen = first_layer_past_key_value.shape[-1] + 1
extended_attention_mask = torch.ones(
(attention_mask.shape[0], target_seqlen - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Filter out only the tokens that can be un-attended, this can happen
# if one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((attention_mask, extended_attention_mask), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
shift_attention_mask = attention_mask[..., 1:]
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return LlavaNextCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
image_sizes=None,
attention_mask=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif self.config.image_token_index in input_ids:
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
# older attention values, as their corresponding values are not part of the input.
if cache_length < past_length and attention_mask is not None:
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"image_sizes": image_sizes,
}
)
return model_inputs
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._reorder_cache
def _reorder_cache(self, *args, **kwargs):
return self.language_model._reorder_cache(*args, **kwargs)

View File

@ -0,0 +1,135 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for LLaVa-NeXT.
"""
from typing import List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class LlavaNextProcessor(ProcessorMixin):
r"""
Constructs a LLaVa-NeXT processor which wraps a LLaVa-NeXT image processor and a LLaMa tokenizer into a single processor.
[`LlavaNextProcessor`] offers all the functionalities of [`LlavaNextImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~LlavaNextProcessor.__call__`] and [`~LlavaNextProcessor.decode`] for more information.
Args:
image_processor ([`LlavaNextImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "LlavaNextImageProcessor"
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None):
super().__init__(image_processor, tokenizer)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if images is not None:
image_inputs = self.image_processor(images, return_tensors=return_tensors)
else:
image_inputs = {}
text_inputs = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
return BatchFeature(data={**text_inputs, **image_inputs})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

View File

@ -13,6 +13,8 @@
# limitations under the License.
""" VipLlava model configuration"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
@ -51,9 +53,6 @@ class VipLlavaConfig(PretrainedConfig):
The layer norm epsilon of the projector layernorm
vision_feature_layers (`List[int]`, *optional*, defaults to `[-2, -5, -8, -11, 6]`):
The list of layers to select the vision features from.
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the VipLlava model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~VipLlavaForConditionalGeneration`]
Example:
@ -88,7 +87,6 @@ class VipLlavaConfig(PretrainedConfig):
projector_hidden_act="gelu",
projector_layernorm_eps=1e-5,
vision_feature_layers=[-2, -5, -8, -11, 6],
vocab_size=32000,
**kwargs,
):
self.ignore_index = ignore_index
@ -96,7 +94,12 @@ class VipLlavaConfig(PretrainedConfig):
self.projector_hidden_act = projector_hidden_act
self.projector_layernorm_eps = projector_layernorm_eps
self.vision_feature_layers = vision_feature_layers
self.vocab_size = vocab_size
if "vocab_size" in kwargs:
warnings.warn(
"The `vocab_size` argument is deprecated and will be removed in v4.42, since it can be inferred from the `text_config`. Passing this argument has no effect",
FutureWarning,
)
self.vision_config = vision_config
@ -116,15 +119,27 @@ class VipLlavaConfig(PretrainedConfig):
vocab_size=32000,
projection_dim=768,
)
self.vocab_size = self.vocab_size
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
self.text_config = text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
self.vocab_size = self.text_config.vocab_size
elif text_config is None:
self.text_config = CONFIG_MAPPING["llama"]()
self._vocab_size = self.text_config.vocab_size
super().__init__(**kwargs)
@property
def vocab_size(self):
warnings.warn(
"The `vocab_size` attribute is deprecated and will be removed in v4.42, Please use `text_config.vocab_size` instead.",
FutureWarning,
)
return self._vocab_size
def to_dict(self):
output = super().to_dict()
output.pop("_vocab_size", None)
return output

View File

@ -248,7 +248,7 @@ class VipLlavaForConditionalGeneration(VipLlavaPreTrainedModel):
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = VipLlavaMultiModalProjector(config)
self.vocab_size = config.vocab_size
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
@ -280,7 +280,6 @@ class VipLlavaForConditionalGeneration(VipLlavaPreTrainedModel):
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds

View File

@ -4806,7 +4806,17 @@ class LlavaPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
class LlavaProcessor(metaclass=DummyObject):
LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LlavaNextForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LlavaNextPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):

View File

@ -310,6 +310,13 @@ class LevitImageProcessor(metaclass=DummyObject):
requires_backends(self, ["vision"])
class LlavaNextImageProcessor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class Mask2FormerImageProcessor(metaclass=DummyObject):
_backends = ["vision"]

View File

@ -14,6 +14,7 @@
# limitations under the License.
""" Testing suite for the PyTorch Llava model. """
import copy
import gc
import unittest
@ -76,7 +77,6 @@ class LlavaVisionText2TextModelTester:
},
is_training=True,
vision_config={
"batch_size": 12,
"image_size": 30,
"patch_size": 2,
"num_channels": 3,
@ -159,9 +159,7 @@ class LlavaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase
all_model_classes = (LlavaForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"image-to-text": LlavaForConditionalGeneration} if is_torch_available() else {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = True
test_head_masking = False
def setUp(self):
@ -186,6 +184,171 @@ class LlavaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_tokens_embeddings with config.vocab_size->config.text_config.vocab_size
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.text_config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# make sure that decoder_input_ids are resized as well
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
self.assertTrue(model.config.text_config.vocab_size + 10, model_vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
self.assertTrue(model_embed.weight.shape[0], model.config.text_config.vocab_size)
self.assertTrue(model.config.text_config.vocab_size, model.vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
target_dimension = 128
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0], target_dimension)
with self.assertRaisesRegex(
ValueError,
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
):
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
# Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_embeddings_untied with config.vocab_size->config.text_config.vocab_size
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Copied from tests.test_modeling_common.ModelTesterMixin.test_tie_model_weights with config.vocab_size->config.text_config.vocab_size
def test_tie_model_weights(self):
if not self.test_torchscript:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_same_values(layer_1, layer_2):
equal = True
for p1, p2 in zip(layer_1.weight, layer_2.weight):
if p1.data.ne(p2.data).sum() > 0:
equal = False
return equal
for model_class in self.all_model_classes:
config.torchscript = True
model_not_tied = model_class(config)
if model_not_tied.get_output_embeddings() is None:
continue
config_tied = copy.deepcopy(config)
config_tied.torchscript = False
model_tied = model_class(config_tied)
params_tied = list(model_tied.parameters())
# Check that the embedding layer and decoding layer are the same in size and in value
# self.assertTrue(check_same_values(embeddings, decoding))
# Check that after resize they remain tied.
model_tied.resize_token_embeddings(config.text_config.vocab_size + 10)
params_tied_2 = list(model_tied.parameters())
self.assertEqual(len(params_tied_2), len(params_tied))
@require_torch
class LlavaForConditionalGenerationIntegrationTest(unittest.TestCase):

View File

View File

@ -0,0 +1,201 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from transformers.models.llava_next.image_processing_llava_next import select_best_resolution
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LlavaNextImageProcessor
class LlavaNextImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=OPENAI_CLIP_MEAN,
image_std=OPENAI_CLIP_STD,
do_convert_rgb=True,
):
size = size if size is not None else {"shortest_edge": 20}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.expected_output_image_shape
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.prepare_image_inputs
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class LlavaNextImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = LlavaNextImageProcessor if is_vision_available() else None
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.setUp with CLIP->LlavaNext
def setUp(self):
self.image_processor_tester = LlavaNextImageProcessingTester(self)
@property
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.image_processor_dict
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
self.assertTrue(hasattr(image_processing, "image_grid_pinpoints"))
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.test_image_processor_from_dict_with_kwargs
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 20})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
def test_select_best_resolution(self):
possible_resolutions = [[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]]
# Test with a square aspect ratio
best_resolution = select_best_resolution((336, 336), possible_resolutions)
self.assertEqual(best_resolution, (672, 336))
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 1445, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (7, 1445, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_numpy(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 1445, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (7, 1445, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 1445, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (7, 1445, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
@unittest.skip("LlavaNextImageProcessor doesn't treat 4 channel PIL and numpy consistently yet") # FIXME Amy
def test_call_numpy_4_channels(self):
pass

View File

@ -0,0 +1,461 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Llava-NeXT model. """
import copy
import gc
import unittest
import requests
from huggingface_hub import hf_hub_download
from transformers import (
AutoProcessor,
LlavaNextConfig,
LlavaNextForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import require_bitsandbytes, require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
if is_torch_available():
import torch
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
class LlavaNextVisionText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=0,
projector_hidden_act="gelu",
seq_length=7,
vision_feature_select_strategy="default",
vision_feature_layer=-1,
text_config={
"model_type": "llama",
"seq_length": 7,
"is_training": True,
"use_input_mask": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 580,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 0,
},
is_training=True,
vision_config={
"image_size": 16,
"patch_size": 2,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.text_config = text_config
self.vision_config = vision_config
self.seq_length = seq_length
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = 3
self.image_size = 30
self.encoder_seq_length = 342
self.image_grid_pinpoints = [[32, 32]]
def get_config(self):
return LlavaNextConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
vision_feature_select_strategy=self.vision_feature_select_strategy,
vision_feature_layer=self.vision_feature_layer,
image_grid_pinpoints=self.image_grid_pinpoints,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
5,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
# we are giving 3 images let's make sure we pass in 3 image tokens
input_ids[:, 1] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"image_sizes": torch.tensor(
[[self.vision_config["image_size"], self.vision_config["image_size"]]] * self.batch_size
),
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class LlavaNextForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `LlavaNextForConditionalGeneration`.
"""
all_model_classes = (LlavaNextForConditionalGeneration,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = LlavaNextVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=LlavaNextConfig, has_text_modality=False)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if "image_newline" in name:
continue
elif param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Feedforward chunking is not yet supported")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="CPU offload is not yet supported")
def test_cpu_offload(self):
pass
# Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_tokens_embeddings with config.vocab_size->config.text_config.vocab_size
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.text_config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# make sure that decoder_input_ids are resized as well
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
self.assertTrue(model.config.text_config.vocab_size + 10, model_vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
self.assertTrue(model_embed.weight.shape[0], model.config.text_config.vocab_size)
self.assertTrue(model.config.text_config.vocab_size, model.vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
target_dimension = 128
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0], target_dimension)
with self.assertRaisesRegex(
ValueError,
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
):
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
# Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_embeddings_untied with config.vocab_size->config.text_config.vocab_size
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Copied from tests.test_modeling_common.ModelTesterMixin.test_tie_model_weights with config.vocab_size->config.text_config.vocab_size
def test_tie_model_weights(self):
if not self.test_torchscript:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_same_values(layer_1, layer_2):
equal = True
for p1, p2 in zip(layer_1.weight, layer_2.weight):
if p1.data.ne(p2.data).sum() > 0:
equal = False
return equal
for model_class in self.all_model_classes:
config.torchscript = True
model_not_tied = model_class(config)
if model_not_tied.get_output_embeddings() is None:
continue
config_tied = copy.deepcopy(config)
config_tied.torchscript = False
model_tied = model_class(config_tied)
params_tied = list(model_tied.parameters())
# Check that the embedding layer and decoding layer are the same in size and in value
# self.assertTrue(check_same_values(embeddings, decoding))
# Check that after resize they remain tied.
model_tied.resize_token_embeddings(config.text_config.vocab_size + 10)
params_tied_2 = list(model_tied.parameters())
self.assertEqual(len(params_tied_2), len(params_tied))
@require_torch
class LlavaNextForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
self.image = Image.open(requests.get(url, stream=True).raw)
self.prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
@require_bitsandbytes
def test_small_model_integration_test(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
inputs = self.processor(self.prompt, self.image, return_tensors="pt")
# verify inputs against original implementation
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="llava_1_6_input_ids.pt", repo_type="dataset")
original_input_ids = torch.load(filepath, map_location="cpu")
# replace -200 by image_token_index (since we use token ID = 32000 for the image token)
original_input_ids[original_input_ids == -200] = model.config.image_token_index
assert original_input_ids[0].tolist() == inputs.input_ids[0].tolist()
filepath = hf_hub_download(
repo_id="nielsr/test-image", filename="llava_1_6_pixel_values.pt", repo_type="dataset"
)
original_pixel_values = torch.load(filepath, map_location="cpu")
assert torch.allclose(original_pixel_values, inputs.pixel_values.half())
# verify single forward pass
inputs = inputs.to(torch_device)
with torch.no_grad():
output = model(**inputs)
expected_slice = torch.tensor(
[[-4.7695, -4.5664, -0.2786], [-10.6172, -10.8906, -2.5234], [-6.7344, -7.2422, -0.6758]],
dtype=torch.float32,
device=torch_device,
)
assert torch.allclose(output.logits[0, :3, :3], expected_slice, atol=1e-3)
# verify generation
output = model.generate(**inputs, max_new_tokens=100)
EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes starting from the same point. This particular radar chart is showing the performance of various models or systems across different metrics or datasets.\n\nThe chart is divided into several sections, each representing a different model or dataset. The axes represent different metrics or datasets, such as "MMM-Vet," "MMM-Bench," "L' # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
cats_image = Image.open(requests.get(url, stream=True).raw)
inputs = self.processor(
[self.prompt, self.prompt], images=[self.image, cats_image], return_tensors="pt", padding=True
).to(torch_device)
# make sure image_sizes are the same
# as otherwise batched generation doesn't work
inputs.image_sizes[1] = inputs.image_sizes[0]
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ['[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays', '[INST] \nWhat is shown in this image? [/INST] The image shows two cats lying on a pink surface, which appears to be a couch or a cush'] # fmt: skip
self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)

View File

@ -14,6 +14,7 @@
# limitations under the License.
""" Testing suite for the PyTorch VipLlava model. """
import copy
import gc
import unittest
@ -185,6 +186,171 @@ class VipLlavaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestC
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
# Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_tokens_embeddings with config.vocab_size->config.text_config.vocab_size
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.text_config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# make sure that decoder_input_ids are resized as well
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
self.assertTrue(model.config.text_config.vocab_size + 10, model_vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
self.assertTrue(model_embed.weight.shape[0], model.config.text_config.vocab_size)
self.assertTrue(model.config.text_config.vocab_size, model.vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
target_dimension = 128
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0], target_dimension)
with self.assertRaisesRegex(
ValueError,
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
):
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
# Copied from tests.test_modeling_common.ModelTesterMixin.test_resize_embeddings_untied with config.vocab_size->config.text_config.vocab_size
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.text_config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Copied from tests.test_modeling_common.ModelTesterMixin.test_tie_model_weights with config.vocab_size->config.text_config.vocab_size
def test_tie_model_weights(self):
if not self.test_torchscript:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_same_values(layer_1, layer_2):
equal = True
for p1, p2 in zip(layer_1.weight, layer_2.weight):
if p1.data.ne(p2.data).sum() > 0:
equal = False
return equal
for model_class in self.all_model_classes:
config.torchscript = True
model_not_tied = model_class(config)
if model_not_tied.get_output_embeddings() is None:
continue
config_tied = copy.deepcopy(config)
config_tied.torchscript = False
model_tied = model_class(config_tied)
params_tied = list(model_tied.parameters())
# Check that the embedding layer and decoding layer are the same in size and in value
# self.assertTrue(check_same_values(embeddings, decoding))
# Check that after resize they remain tied.
model_tied.resize_token_embeddings(config.text_config.vocab_size + 10)
params_tied_2 = list(model_tied.parameters())
self.assertEqual(len(params_tied_2), len(params_tied))
@require_torch
class VipLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):

View File

@ -147,6 +147,7 @@ docs/source/en/model_doc/lilt.md
docs/source/en/model_doc/llama.md
docs/source/en/model_doc/llama2.md
docs/source/en/model_doc/llava.md
docs/source/en/model_doc/llava_next.md
docs/source/en/model_doc/longformer.md
docs/source/en/model_doc/longt5.md
docs/source/en/model_doc/luke.md
@ -643,6 +644,8 @@ src/transformers/models/llama/convert_llama_weights_to_hf.py
src/transformers/models/llama/modeling_llama.py
src/transformers/models/llava/configuration_llava.py
src/transformers/models/llava/modeling_llava.py
src/transformers/models/llava_next/configuration_llava_next.py
src/transformers/models/llava_next/modeling_llava_next.py
src/transformers/models/longformer/configuration_longformer.py
src/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py
src/transformers/models/longt5/configuration_longt5.py