mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
Add FocalNet (#21532)
Adds FocalNet by Microsoft to transformers --------- Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local> Co-authored-by: alaradirik <alaradirik@gmail.com>
This commit is contained in:
parent
d04ec99bec
commit
3d3204c025
@ -341,6 +341,7 @@ Current number of checkpoints: ** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
|
||||
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
|
||||
|
@ -329,6 +329,7 @@ Número actual de puntos de control: ** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
|
||||
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
|
||||
|
@ -301,6 +301,7 @@ conda install -c huggingface transformers
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS से) साथ वाला पेपर [FlauBERT: Unsupervised Language Model Pre-training for फ़्रेंच](https://arxiv .org/abs/1912.05372) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, बेंजामिन लेकोउटेक्स, अलेक्जेंड्रे अल्लाउज़ेन, बेनोइट क्रैबे, लॉरेंट बेसेसियर, डिडिएर श्वाब द्वारा।
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (FLAVA: A फाउंडेशनल लैंग्वेज एंड विजन अलाइनमेंट मॉडल) (https://arxiv) साथ वाला पेपर .org/abs/2112.04482) अमनप्रीत सिंह, रोंगहांग हू, वेदानुज गोस्वामी, गुइल्यूम कुएरॉन, वोज्शिएक गालुबा, मार्कस रोहरबैक, और डौवे कीला द्वारा।
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (गूगल रिसर्च से) साथ वाला पेपर [FNet: मिक्सिंग टोकन विद फूरियर ट्रांसफॉर्म्स](https://arxiv.org /abs/2105.03824) जेम्स ली-थॉर्प, जोशुआ आइंस्ली, इल्या एकस्टीन, सैंटियागो ओंटानन द्वारा।
|
||||
1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (Microsoft Research से) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. द्वाराअनुसंधान पत्र [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) के साथ जारी किया गया
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [फ़नल-ट्रांसफॉर्मर: कुशल भाषा प्रसंस्करण के लिए अनुक्रमिक अतिरेक को छानना](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले द्वारा रिहाई।
|
||||
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
|
||||
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [वर्टिकल कटडेप्थ के साथ मोनोकुलर डेप्थ एस्टीमेशन के लिए ग्लोबल-लोकल पाथ नेटवर्क्स](https:/ /arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा।
|
||||
|
@ -363,6 +363,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS から) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab から公開された研究論文: [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372)
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (Facebook AI から) Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela から公開された研究論文: [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482)
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (Google Research から) James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon から公開された研究論文: [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824)
|
||||
1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (Microsoft Research から) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. から公開された研究論文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926)
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236)
|
||||
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100)
|
||||
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436)
|
||||
|
@ -278,6 +278,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
|
||||
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
|
||||
|
@ -302,6 +302,7 @@ conda install -c huggingface transformers
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
|
||||
1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (来自 Microsoft Research) 伴随论文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) 由 Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao 发布。
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
|
||||
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。
|
||||
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
|
||||
|
@ -314,6 +314,7 @@ conda install -c huggingface transformers
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[FocalNet](https://huggingface.co/docs/transformers/main/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
|
||||
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
|
||||
|
@ -464,6 +464,8 @@
|
||||
title: EfficientFormer
|
||||
- local: model_doc/efficientnet
|
||||
title: EfficientNet
|
||||
- local: model_doc/focalnet
|
||||
title: FocalNet
|
||||
- local: model_doc/glpn
|
||||
title: GLPN
|
||||
- local: model_doc/imagegpt
|
||||
|
@ -115,6 +115,7 @@ The documentation is organized into five sections:
|
||||
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[FocalNet](model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
|
||||
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GIT](model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
|
||||
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
|
||||
@ -318,6 +319,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| FocalNet | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| GIT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
|
51
docs/source/en/model_doc/focalnet.mdx
Normal file
51
docs/source/en/model_doc/focalnet.mdx
Normal file
@ -0,0 +1,51 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# FocalNet
|
||||
|
||||
## Overview
|
||||
|
||||
The FocalNet model was proposed in [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
|
||||
FocalNets completely replace self-attention (used in models like [ViT](vit) and [Swin](swin)) by a focal modulation mechanism for modeling token interactions in vision.
|
||||
The authors claim that FocalNets outperform self-attention based models with similar computational costs on the tasks of image classification, object detection, and segmentation.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We propose focal modulation networks (FocalNets in short), where self-attention (SA) is completely replaced by a focal modulation mechanism for modeling token interactions in vision. Focal modulation comprises three components: (i) hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges, (ii) gated aggregation to selectively gather contexts for each query token based on its
|
||||
content, and (iii) element-wise modulation or affine transformation to inject the aggregated context into the query. Extensive experiments show FocalNets outperform the state-of-the-art SA counterparts (e.g., Swin and Focal Transformers) with similar computational costs on the tasks of image classification, object detection, and segmentation. Specifically, FocalNets with tiny and base size achieve 82.3% and 83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-22K in 224 resolution, it attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution 224 and 384, respectively. When transferred to downstream tasks, FocalNets exhibit clear superiority. For object detection with Mask R-CNN, FocalNet base trained with 1\times outperforms the Swin counterpart by 2.1 points and already surpasses Swin trained with 3\times schedule (49.0 v.s. 48.5). For semantic segmentation with UPerNet, FocalNet base at single-scale outperforms Swin by 2.4, and beats Swin at multi-scale (50.5 v.s. 49.7). Using large FocalNet and Mask2former, we achieve 58.5 mIoU for ADE20K semantic segmentation, and 57.9 PQ for COCO Panoptic Segmentation. Using huge FocalNet and DINO, we achieved 64.3 and 64.4 mAP on COCO minival and test-dev, respectively, establishing new SoTA on top of much larger attention-based models like Swinv2-G and BEIT-3.*
|
||||
|
||||
Tips:
|
||||
|
||||
- One can use the [`AutoImageProcessor`] class to prepare images for the model.
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/microsoft/FocalNet).
|
||||
|
||||
|
||||
## FocalNetConfig
|
||||
|
||||
[[autodoc]] FocalNetConfig
|
||||
|
||||
## FocalNetModel
|
||||
|
||||
[[autodoc]] FocalNetModel
|
||||
- forward
|
||||
|
||||
## FocalNetForMaskedImageModeling
|
||||
|
||||
[[autodoc]] FocalNetForMaskedImageModeling
|
||||
- forward
|
||||
|
||||
## FocalNetForImageClassification
|
||||
|
||||
[[autodoc]] FocalNetForImageClassification
|
||||
- forward
|
@ -30,7 +30,7 @@ The task illustrated in this tutorial is supported by the following model archit
|
||||
|
||||
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
|
||||
|
||||
[BEiT](../model_doc/beit), [BiT](../model_doc/bit), [ConvNeXT](../model_doc/convnext), [ConvNeXTV2](../model_doc/convnextv2), [CvT](../model_doc/cvt), [Data2VecVision](../model_doc/data2vec-vision), [DeiT](../model_doc/deit), [DiNAT](../model_doc/dinat), [EfficientFormer](../model_doc/efficientformer), [EfficientNet](../model_doc/efficientnet), [ImageGPT](../model_doc/imagegpt), [LeViT](../model_doc/levit), [MobileNetV1](../model_doc/mobilenet_v1), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [NAT](../model_doc/nat), [Perceiver](../model_doc/perceiver), [PoolFormer](../model_doc/poolformer), [RegNet](../model_doc/regnet), [ResNet](../model_doc/resnet), [SegFormer](../model_doc/segformer), [Swin Transformer](../model_doc/swin), [Swin Transformer V2](../model_doc/swinv2), [VAN](../model_doc/van), [ViT](../model_doc/vit), [ViT Hybrid](../model_doc/vit_hybrid), [ViTMSN](../model_doc/vit_msn)
|
||||
[BEiT](../model_doc/beit), [BiT](../model_doc/bit), [ConvNeXT](../model_doc/convnext), [ConvNeXTV2](../model_doc/convnextv2), [CvT](../model_doc/cvt), [Data2VecVision](../model_doc/data2vec-vision), [DeiT](../model_doc/deit), [DiNAT](../model_doc/dinat), [EfficientFormer](../model_doc/efficientformer), [EfficientNet](../model_doc/efficientnet), [FocalNet](../model_doc/focalnet), [ImageGPT](../model_doc/imagegpt), [LeViT](../model_doc/levit), [MobileNetV1](../model_doc/mobilenet_v1), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [NAT](../model_doc/nat), [Perceiver](../model_doc/perceiver), [PoolFormer](../model_doc/poolformer), [RegNet](../model_doc/regnet), [ResNet](../model_doc/resnet), [SegFormer](../model_doc/segformer), [Swin Transformer](../model_doc/swin), [Swin Transformer V2](../model_doc/swinv2), [VAN](../model_doc/van), [ViT](../model_doc/vit), [ViT Hybrid](../model_doc/vit_hybrid), [ViTMSN](../model_doc/vit_msn)
|
||||
<!--End of the generated tip-->
|
||||
|
||||
</Tip>
|
||||
|
@ -294,6 +294,7 @@ _import_structure = {
|
||||
"FlavaTextConfig",
|
||||
],
|
||||
"models.fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"],
|
||||
"models.focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"],
|
||||
"models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"],
|
||||
"models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"],
|
||||
"models.git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitProcessor", "GitVisionConfig"],
|
||||
@ -1617,6 +1618,15 @@ else:
|
||||
"FNetPreTrainedModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.focalnet"].extend(
|
||||
[
|
||||
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"FocalNetForImageClassification",
|
||||
"FocalNetForMaskedImageModeling",
|
||||
"FocalNetModel",
|
||||
"FocalNetPreTrainedModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"])
|
||||
_import_structure["models.funnel"].extend(
|
||||
[
|
||||
@ -4017,6 +4027,7 @@ if TYPE_CHECKING:
|
||||
FlavaTextConfig,
|
||||
)
|
||||
from .models.fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
|
||||
from .models.focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
|
||||
from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer
|
||||
from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer
|
||||
from .models.git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitProcessor, GitVisionConfig
|
||||
@ -5154,6 +5165,13 @@ if TYPE_CHECKING:
|
||||
FNetModel,
|
||||
FNetPreTrainedModel,
|
||||
)
|
||||
from .models.focalnet import (
|
||||
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
FocalNetForImageClassification,
|
||||
FocalNetForMaskedImageModeling,
|
||||
FocalNetModel,
|
||||
FocalNetPreTrainedModel,
|
||||
)
|
||||
from .models.fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel
|
||||
from .models.funnel import (
|
||||
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
|
@ -78,6 +78,7 @@ from . import (
|
||||
flaubert,
|
||||
flava,
|
||||
fnet,
|
||||
focalnet,
|
||||
fsmt,
|
||||
funnel,
|
||||
git,
|
||||
|
@ -86,6 +86,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
|
||||
("flaubert", "FlaubertConfig"),
|
||||
("flava", "FlavaConfig"),
|
||||
("fnet", "FNetConfig"),
|
||||
("focalnet", "FocalNetConfig"),
|
||||
("fsmt", "FSMTConfig"),
|
||||
("funnel", "FunnelConfig"),
|
||||
("git", "GitConfig"),
|
||||
@ -271,6 +272,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
|
||||
("flaubert", "FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("flava", "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("focalnet", "FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("git", "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
@ -456,6 +458,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
|
||||
("flaubert", "FlauBERT"),
|
||||
("flava", "FLAVA"),
|
||||
("fnet", "FNet"),
|
||||
("focalnet", "FocalNet"),
|
||||
("fsmt", "FairSeq Machine-Translation"),
|
||||
("funnel", "Funnel Transformer"),
|
||||
("git", "GIT"),
|
||||
|
@ -61,6 +61,7 @@ IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
|
||||
("efficientformer", "EfficientFormerImageProcessor"),
|
||||
("efficientnet", "EfficientNetImageProcessor"),
|
||||
("flava", "FlavaImageProcessor"),
|
||||
("focalnet", "BitImageProcessor"),
|
||||
("git", "CLIPImageProcessor"),
|
||||
("glpn", "GLPNImageProcessor"),
|
||||
("groupvit", "CLIPImageProcessor"),
|
||||
|
@ -84,6 +84,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
|
||||
("flaubert", "FlaubertModel"),
|
||||
("flava", "FlavaModel"),
|
||||
("fnet", "FNetModel"),
|
||||
("focalnet", "FocalNetModel"),
|
||||
("fsmt", "FSMTModel"),
|
||||
("funnel", ("FunnelModel", "FunnelBaseModel")),
|
||||
("git", "GitModel"),
|
||||
@ -408,6 +409,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
|
||||
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES = OrderedDict(
|
||||
[
|
||||
("deit", "DeiTForMaskedImageModeling"),
|
||||
("focalnet", "FocalNetForMaskedImageModeling"),
|
||||
("swin", "SwinForMaskedImageModeling"),
|
||||
("swinv2", "Swinv2ForMaskedImageModeling"),
|
||||
("vit", "ViTForMaskedImageModeling"),
|
||||
@ -441,6 +443,7 @@ MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
|
||||
),
|
||||
),
|
||||
("efficientnet", "EfficientNetForImageClassification"),
|
||||
("focalnet", "FocalNetForImageClassification"),
|
||||
("imagegpt", "ImageGPTForImageClassification"),
|
||||
("levit", ("LevitForImageClassification", "LevitForImageClassificationWithTeacher")),
|
||||
("mobilenet_v1", "MobileNetV1ForImageClassification"),
|
||||
|
57
src/transformers/models/focalnet/__init__.py
Normal file
57
src/transformers/models/focalnet/__init__.py
Normal file
@ -0,0 +1,57 @@
|
||||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
# rely on isort to merge the imports
|
||||
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
||||
|
||||
|
||||
_import_structure = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
|
||||
|
||||
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
_import_structure["modeling_focalnet"] = [
|
||||
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"FocalNetForImageClassification",
|
||||
"FocalNetForMaskedImageModeling",
|
||||
"FocalNetModel",
|
||||
"FocalNetPreTrainedModel",
|
||||
]
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
|
||||
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
from .modeling_focalnet import (
|
||||
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
FocalNetForImageClassification,
|
||||
FocalNetForMaskedImageModeling,
|
||||
FocalNetModel,
|
||||
FocalNetPreTrainedModel,
|
||||
)
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
143
src/transformers/models/focalnet/configuration_focalnet.py
Normal file
143
src/transformers/models/focalnet/configuration_focalnet.py
Normal file
@ -0,0 +1,143 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" FocalNet model configuration"""
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class FocalNetConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`FocalNetModel`]. It is used to instantiate a
|
||||
FocalNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the FocalNet
|
||||
[microsoft/focalnet-tiny](https://huggingface.co/microsoft/focalnet-tiny) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
image_size (`int`, *optional*, defaults to 224):
|
||||
The size (resolution) of each image.
|
||||
patch_size (`int`, *optional*, defaults to 4):
|
||||
The size (resolution) of each patch in the embeddings layer.
|
||||
num_channels (`int`, *optional*, defaults to 3):
|
||||
The number of input channels.
|
||||
embed_dim (`int`, *optional*, defaults to 96):
|
||||
Dimensionality of patch embedding.
|
||||
use_conv_embed (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use convolutional embedding. The authors noted that using convolutional embedding usually
|
||||
improve the performance, but it's not used by default.
|
||||
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
|
||||
Depth (number of layers) of each stage in the encoder.
|
||||
focal_levels (`list(int)`, *optional*, defaults to `[2, 2, 2, 2]`):
|
||||
Number of focal levels in each layer of the respective stages in the encoder.
|
||||
focal_windows (`list(int)`, *optional*, defaults to `[3, 3, 3, 3]`):
|
||||
Focal window size in each layer of the respective stages in the encoder.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
|
||||
`"selu"` and `"gelu_new"` are supported.
|
||||
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
||||
Ratio of MLP hidden dimensionality to embedding dimensionality.
|
||||
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probability for all fully connected layers in the embeddings and encoder.
|
||||
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
||||
Stochastic depth rate.
|
||||
use_layerscale (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use layer scale in the encoder.
|
||||
layerscale_value (`float`, *optional*, defaults to 1e-4):
|
||||
The initial value of the layer scale.
|
||||
use_post_layernorm (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use post layer normalization in the encoder.
|
||||
use_post_layernorm_in_modulation (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use post layer normalization in the modulation layer.
|
||||
normalize_modulator (`bool`, *optional*, defaults to `False`):
|
||||
Whether to normalize the modulator.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
||||
The epsilon used by the layer normalization layers.
|
||||
encoder_stride (`int`, `optional`, defaults to 32):
|
||||
Factor to increase the spatial resolution by in the decoder head for masked image modeling.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import FocalNetConfig, FocalNetModel
|
||||
|
||||
>>> # Initializing a FocalNet microsoft/focalnet-tiny style configuration
|
||||
>>> configuration = FocalNetConfig()
|
||||
|
||||
>>> # Initializing a model (with random weights) from the microsoft/focalnet-tiny style configuration
|
||||
>>> model = FocalNetModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
model_type = "focalnet"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_size=224,
|
||||
patch_size=4,
|
||||
num_channels=3,
|
||||
embed_dim=96,
|
||||
use_conv_embed=False,
|
||||
depths=[2, 2, 6, 2],
|
||||
focal_levels=[2, 2, 2, 2],
|
||||
focal_windows=[3, 3, 3, 3],
|
||||
hidden_act="gelu",
|
||||
mlp_ratio=4.0,
|
||||
hidden_dropout_prob=0.0,
|
||||
drop_path_rate=0.1,
|
||||
use_layerscale=False,
|
||||
layerscale_value=1e-4,
|
||||
use_post_layernorm=False,
|
||||
use_post_layernorm_in_modulation=False,
|
||||
normalize_modulator=False,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-5,
|
||||
encoder_stride=32,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.image_size = image_size
|
||||
self.patch_size = patch_size
|
||||
self.num_channels = num_channels
|
||||
self.embed_dim = embed_dim
|
||||
self.use_conv_embed = use_conv_embed
|
||||
self.depths = depths
|
||||
self.focal_levels = focal_levels
|
||||
self.focal_windows = focal_windows
|
||||
self.hidden_act = hidden_act
|
||||
self.mlp_ratio = mlp_ratio
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.drop_path_rate = drop_path_rate
|
||||
self.use_layerscale = use_layerscale
|
||||
self.layerscale_value = layerscale_value
|
||||
self.use_post_layernorm = use_post_layernorm
|
||||
self.use_post_layernorm_in_modulation = use_post_layernorm_in_modulation
|
||||
self.normalize_modulator = normalize_modulator
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.encoder_stride = encoder_stride
|
@ -0,0 +1,235 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Convert FocalNet checkpoints from the original repository. URL: https://github.com/microsoft/FocalNet/tree/main"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
import requests
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
|
||||
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
|
||||
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
|
||||
|
||||
|
||||
def get_focalnet_config(model_name):
|
||||
depths = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2]
|
||||
use_conv_embed = True if "large" in model_name or "huge" in model_name else False
|
||||
use_post_layernorm = True if "large" in model_name or "huge" in model_name else False
|
||||
use_layerscale = True if "large" in model_name or "huge" in model_name else False
|
||||
|
||||
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
|
||||
if "fl3" in model_name:
|
||||
focal_levels = [3, 3, 3, 3]
|
||||
focal_windows = [5, 5, 5, 5]
|
||||
elif "fl4" in model_name:
|
||||
focal_levels = [4, 4, 4, 4]
|
||||
focal_windows = [3, 3, 3, 3]
|
||||
|
||||
if "tiny" in model_name or "small" in model_name or "base" in model_name:
|
||||
focal_windows = [3, 3, 3, 3]
|
||||
if "lrf" in model_name:
|
||||
focal_levels = [3, 3, 3, 3]
|
||||
else:
|
||||
focal_levels = [2, 2, 2, 2]
|
||||
|
||||
if "tiny" in model_name:
|
||||
embed_dim = 96
|
||||
elif "small" in model_name:
|
||||
embed_dim = 96
|
||||
elif "base" in model_name:
|
||||
embed_dim = 128
|
||||
elif "large" in model_name:
|
||||
embed_dim = 192
|
||||
focal_windows = [5, 5, 5, 5]
|
||||
elif "xlarge" in model_name:
|
||||
embed_dim = 256
|
||||
elif "huge" in model_name:
|
||||
embed_dim = 352
|
||||
|
||||
# set label information
|
||||
repo_id = "huggingface/label-files"
|
||||
if "large" in model_name or "huge" in model_name:
|
||||
filename = "imagenet-22k-id2label.json"
|
||||
else:
|
||||
filename = "imagenet-1k-id2label.json"
|
||||
|
||||
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
||||
id2label = {int(k): v for k, v in id2label.items()}
|
||||
label2id = {v: k for k, v in id2label.items()}
|
||||
|
||||
config = FocalNetConfig(
|
||||
embed_dim=embed_dim,
|
||||
depths=depths,
|
||||
focal_levels=focal_levels,
|
||||
focal_windows=focal_windows,
|
||||
use_conv_embed=use_conv_embed,
|
||||
id2label=id2label,
|
||||
label2id=label2id,
|
||||
use_post_layernorm=use_post_layernorm,
|
||||
use_layerscale=use_layerscale,
|
||||
)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def rename_key(name):
|
||||
if "patch_embed.proj" in name:
|
||||
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
|
||||
if "patch_embed.norm" in name:
|
||||
name = name.replace("patch_embed.norm", "embeddings.norm")
|
||||
if "layers" in name:
|
||||
name = "encoder." + name
|
||||
if "encoder.layers" in name:
|
||||
name = name.replace("encoder.layers", "encoder.stages")
|
||||
if "downsample.proj" in name:
|
||||
name = name.replace("downsample.proj", "downsample.projection")
|
||||
if "blocks" in name:
|
||||
name = name.replace("blocks", "layers")
|
||||
if "modulation.f.weight" in name or "modulation.f.bias" in name:
|
||||
name = name.replace("modulation.f", "modulation.projection_in")
|
||||
if "modulation.h.weight" in name or "modulation.h.bias" in name:
|
||||
name = name.replace("modulation.h", "modulation.projection_context")
|
||||
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
|
||||
name = name.replace("modulation.proj", "modulation.projection_out")
|
||||
|
||||
if name == "norm.weight":
|
||||
name = "layernorm.weight"
|
||||
if name == "norm.bias":
|
||||
name = "layernorm.bias"
|
||||
|
||||
if "head" in name:
|
||||
name = name.replace("head", "classifier")
|
||||
else:
|
||||
name = "focalnet." + name
|
||||
|
||||
return name
|
||||
|
||||
|
||||
def convert_focalnet_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
|
||||
# fmt: off
|
||||
model_name_to_url = {
|
||||
"focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth",
|
||||
"focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth",
|
||||
"focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth",
|
||||
"focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth",
|
||||
"focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth",
|
||||
"focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth",
|
||||
"focalnet-large": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth",
|
||||
}
|
||||
# fmt: on
|
||||
|
||||
checkpoint_url = model_name_to_url[model_name]
|
||||
print("Checkpoint URL: ", checkpoint_url)
|
||||
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
|
||||
|
||||
# rename keys
|
||||
for key in state_dict.copy().keys():
|
||||
val = state_dict.pop(key)
|
||||
state_dict[rename_key(key)] = val
|
||||
|
||||
config = get_focalnet_config(model_name)
|
||||
model = FocalNetForImageClassification(config)
|
||||
model.eval()
|
||||
|
||||
# load state dict
|
||||
model.load_state_dict(state_dict)
|
||||
|
||||
# verify conversion
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
|
||||
processor = BitImageProcessor(
|
||||
do_resize=True,
|
||||
size={"shortest_edge": 256},
|
||||
resample=PILImageResampling.BILINEAR,
|
||||
do_center_crop=True,
|
||||
crop_size=224,
|
||||
do_normalize=True,
|
||||
image_mean=IMAGENET_DEFAULT_MEAN,
|
||||
image_std=IMAGENET_DEFAULT_STD,
|
||||
)
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = processor(images=image, return_tensors="pt")
|
||||
|
||||
image_transforms = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||
]
|
||||
)
|
||||
|
||||
original_pixel_values = image_transforms(image).unsqueeze(0)
|
||||
|
||||
# verify pixel_values
|
||||
assert torch.allclose(inputs.pixel_values, original_pixel_values, atol=1e-4)
|
||||
|
||||
outputs = model(**inputs)
|
||||
|
||||
predicted_class_idx = outputs.logits.argmax(-1).item()
|
||||
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
||||
|
||||
print("First values of logits:", outputs.logits[0, :3])
|
||||
|
||||
if model_name == "focalnet-tiny":
|
||||
expected_slice = torch.tensor([0.2166, -0.4368, 0.2191])
|
||||
elif model_name == "focalnet-tiny-lrf":
|
||||
expected_slice = torch.tensor([1.1669, 0.0125, -0.1695])
|
||||
elif model_name == "focalnet-small":
|
||||
expected_slice = torch.tensor([0.4917, -0.0430, 0.1341])
|
||||
elif model_name == "focalnet-small-lrf":
|
||||
expected_slice = torch.tensor([-0.2588, -0.5342, -0.2331])
|
||||
elif model_name == "focalnet-base":
|
||||
expected_slice = torch.tensor([-0.1655, -0.4090, -0.1730])
|
||||
elif model_name == "focalnet-base-lrf":
|
||||
expected_slice = torch.tensor([0.5306, -0.0483, -0.3928])
|
||||
assert torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)
|
||||
print("Looks ok!")
|
||||
|
||||
if pytorch_dump_folder_path is not None:
|
||||
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}")
|
||||
model.save_pretrained(pytorch_dump_folder_path)
|
||||
processor.save_pretrained(pytorch_dump_folder_path)
|
||||
|
||||
if push_to_hub:
|
||||
print(f"Pushing model and processor of {model_name} to the hub...")
|
||||
model.push_to_hub(f"{model_name}")
|
||||
processor.push_to_hub(f"{model_name}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
# Required parameters
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
default="focalnet-tiny",
|
||||
type=str,
|
||||
help="Name of the FocalNet model you'd like to convert.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--push_to_hub",
|
||||
action="store_true",
|
||||
help="Whether to push the model and processor to the hub.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
973
src/transformers/models/focalnet/modeling_focalnet.py
Normal file
973
src/transformers/models/focalnet/modeling_focalnet.py
Normal file
@ -0,0 +1,973 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch FocalNet model."""
|
||||
|
||||
|
||||
import collections.abc
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...utils import (
|
||||
ModelOutput,
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
logging,
|
||||
replace_return_docstrings,
|
||||
)
|
||||
from .configuration_focalnet import FocalNetConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
# General docstring
|
||||
_CONFIG_FOR_DOC = "FocalNetConfig"
|
||||
|
||||
# Base docstring
|
||||
_CHECKPOINT_FOR_DOC = "microsoft/focalnet-tiny"
|
||||
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
|
||||
|
||||
# Image classification docstring
|
||||
_IMAGE_CLASS_CHECKPOINT = "microsoft/focalnet-tiny"
|
||||
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
||||
|
||||
|
||||
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||||
"microsoft/focalnet-tiny",
|
||||
# See all FocalNet models at https://huggingface.co/models?filter=focalnet
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class FocalNetEncoderOutput(ModelOutput):
|
||||
"""
|
||||
FocalNet encoder's outputs, with potential hidden states.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
||||
shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
|
||||
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
||||
shape `(batch_size, hidden_size, height, width)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
||||
include the spatial dimensions.
|
||||
"""
|
||||
|
||||
last_hidden_state: torch.FloatTensor = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class FocalNetModelOutput(ModelOutput):
|
||||
"""
|
||||
FocalNet model's outputs that also contains a pooling of the last hidden states.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
|
||||
Average pooling of the last layer hidden-state.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
||||
shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
||||
shape `(batch_size, hidden_size, height, width)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
||||
include the spatial dimensions.
|
||||
"""
|
||||
|
||||
last_hidden_state: torch.FloatTensor = None
|
||||
pooler_output: Optional[torch.FloatTensor] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class FocalNetMaskedImageModelingOutput(ModelOutput):
|
||||
"""
|
||||
FocalNet masked image model outputs.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
|
||||
Masked image modeling (MLM) loss.
|
||||
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||||
Reconstructed pixel values.
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
||||
shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
||||
shape `(batch_size, hidden_size, height, width)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
||||
include the spatial dimensions.
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
reconstruction: torch.FloatTensor = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class FocalNetImageClassifierOutput(ModelOutput):
|
||||
"""
|
||||
FocalNet outputs for image classification.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Classification (or regression if config.num_labels==1) loss.
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
||||
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
||||
shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
||||
shape `(batch_size, hidden_size, height, width)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
||||
include the spatial dimensions.
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: torch.FloatTensor = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
class FocalNetEmbeddings(nn.Module):
|
||||
"""
|
||||
Construct the patch embeddings and layernorm. Optionally, also the mask token.
|
||||
"""
|
||||
|
||||
def __init__(self, config, use_mask_token=False):
|
||||
super().__init__()
|
||||
|
||||
self.patch_embeddings = FocalNetPatchEmbeddings(
|
||||
config=config,
|
||||
image_size=config.image_size,
|
||||
patch_size=config.patch_size,
|
||||
num_channels=config.num_channels,
|
||||
embed_dim=config.embed_dim,
|
||||
use_conv_embed=config.use_conv_embed,
|
||||
is_stem=True,
|
||||
)
|
||||
self.patch_grid = self.patch_embeddings.grid_size
|
||||
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
|
||||
|
||||
self.norm = nn.LayerNorm(config.embed_dim, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(
|
||||
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None
|
||||
) -> Tuple[torch.Tensor]:
|
||||
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
|
||||
embeddings = self.norm(embeddings)
|
||||
batch_size, seq_len, _ = embeddings.size()
|
||||
|
||||
if bool_masked_pos is not None:
|
||||
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
||||
# replace the masked visual tokens by mask_tokens
|
||||
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
||||
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
|
||||
|
||||
embeddings = self.dropout(embeddings)
|
||||
|
||||
return embeddings, output_dimensions
|
||||
|
||||
|
||||
class FocalNetPatchEmbeddings(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
image_size,
|
||||
patch_size,
|
||||
num_channels,
|
||||
embed_dim,
|
||||
add_norm=False,
|
||||
use_conv_embed=False,
|
||||
is_stem=False,
|
||||
):
|
||||
super().__init__()
|
||||
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
||||
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
||||
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||||
self.image_size = image_size
|
||||
self.patch_size = patch_size
|
||||
self.num_channels = num_channels
|
||||
self.num_patches = num_patches
|
||||
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
||||
|
||||
if use_conv_embed:
|
||||
# if we choose to use conv embedding, then we treat the stem and non-stem differently
|
||||
if is_stem:
|
||||
kernel_size = 7
|
||||
padding = 2
|
||||
stride = 4
|
||||
else:
|
||||
kernel_size = 3
|
||||
padding = 1
|
||||
stride = 2
|
||||
self.projection = nn.Conv2d(
|
||||
num_channels, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
||||
)
|
||||
else:
|
||||
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||||
|
||||
if add_norm:
|
||||
self.norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
def maybe_pad(self, pixel_values, height, width):
|
||||
if width % self.patch_size[1] != 0:
|
||||
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
|
||||
pixel_values = nn.functional.pad(pixel_values, pad_values)
|
||||
if height % self.patch_size[0] != 0:
|
||||
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
|
||||
pixel_values = nn.functional.pad(pixel_values, pad_values)
|
||||
return pixel_values
|
||||
|
||||
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
|
||||
_, num_channels, height, width = pixel_values.shape
|
||||
if num_channels != self.num_channels:
|
||||
raise ValueError(
|
||||
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
||||
)
|
||||
# pad the input to be divisible by self.patch_size, if needed
|
||||
pixel_values = self.maybe_pad(pixel_values, height, width)
|
||||
embeddings = self.projection(pixel_values)
|
||||
_, _, height, width = embeddings.shape
|
||||
output_dimensions = (height, width)
|
||||
embeddings = embeddings.flatten(2).transpose(1, 2)
|
||||
|
||||
if self.norm is not None:
|
||||
embeddings = self.norm(embeddings)
|
||||
|
||||
return embeddings, output_dimensions
|
||||
|
||||
|
||||
# Copied from transformers.models.beit.modeling_beit.drop_path
|
||||
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
|
||||
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
||||
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
||||
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
||||
argument.
|
||||
"""
|
||||
if drop_prob == 0.0 or not training:
|
||||
return input
|
||||
keep_prob = 1 - drop_prob
|
||||
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||||
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
||||
random_tensor.floor_() # binarize
|
||||
output = input.div(keep_prob) * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->FocalNet
|
||||
class FocalNetDropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
||||
|
||||
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
||||
super().__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
return drop_path(hidden_states, self.drop_prob, self.training)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "p={}".format(self.drop_prob)
|
||||
|
||||
|
||||
class FocalNetModulation(nn.Module):
|
||||
def __init__(self, config, index, dim, focal_factor=2, bias=True, projection_dropout=0.0):
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.focal_window = config.focal_windows[index]
|
||||
self.focal_level = config.focal_levels[index]
|
||||
self.focal_factor = focal_factor
|
||||
self.use_post_layernorm_in_modulation = config.use_post_layernorm_in_modulation
|
||||
self.normalize_modulator = config.normalize_modulator
|
||||
|
||||
self.projection_in = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias)
|
||||
self.projection_context = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
|
||||
|
||||
self.activation = nn.GELU()
|
||||
self.projection_out = nn.Linear(dim, dim)
|
||||
self.projection_dropout = nn.Dropout(projection_dropout)
|
||||
self.focal_layers = nn.ModuleList()
|
||||
|
||||
self.kernel_sizes = []
|
||||
for k in range(self.focal_level):
|
||||
kernel_size = self.focal_factor * k + self.focal_window
|
||||
self.focal_layers.append(
|
||||
nn.Sequential(
|
||||
nn.Conv2d(
|
||||
dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size // 2, bias=False
|
||||
),
|
||||
nn.GELU(),
|
||||
)
|
||||
)
|
||||
self.kernel_sizes.append(kernel_size)
|
||||
if self.use_post_layernorm_in_modulation:
|
||||
self.layernorm = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(self, hidden_state):
|
||||
"""
|
||||
Args:
|
||||
hidden_state:
|
||||
Input features with shape of (batch_size, height, width, num_channels)
|
||||
"""
|
||||
num_channels = hidden_state.shape[-1]
|
||||
|
||||
# pre linear projection
|
||||
x = self.projection_in(hidden_state).permute(0, 3, 1, 2).contiguous()
|
||||
q, ctx, self.gates = torch.split(x, (num_channels, num_channels, self.focal_level + 1), 1)
|
||||
|
||||
# context aggreation
|
||||
ctx_all = 0
|
||||
for level in range(self.focal_level):
|
||||
ctx = self.focal_layers[level](ctx)
|
||||
ctx_all = ctx_all + ctx * self.gates[:, level : level + 1]
|
||||
ctx_global = self.activation(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
|
||||
ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level :]
|
||||
|
||||
# normalize context
|
||||
if self.normalize_modulator:
|
||||
ctx_all = ctx_all / (self.focal_level + 1)
|
||||
|
||||
# focal modulation
|
||||
self.modulator = self.projection_context(ctx_all)
|
||||
x_out = q * self.modulator
|
||||
x_out = x_out.permute(0, 2, 3, 1).contiguous()
|
||||
if self.use_post_layernorm_in_modulation:
|
||||
x_out = self.layernorm(x_out)
|
||||
|
||||
# post linear porjection
|
||||
x_out = self.projection_out(x_out)
|
||||
x_out = self.projection_dropout(x_out)
|
||||
return x_out
|
||||
|
||||
|
||||
class FocalNetMlp(nn.Module):
|
||||
def __init__(self, config, in_features, hidden_features=None, out_features=None, drop=0.0):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.activation = ACT2FN[config.hidden_act]
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, hidden_state):
|
||||
hidden_state = self.fc1(hidden_state)
|
||||
hidden_state = self.activation(hidden_state)
|
||||
hidden_state = self.drop(hidden_state)
|
||||
hidden_state = self.fc2(hidden_state)
|
||||
hidden_state = self.drop(hidden_state)
|
||||
return hidden_state
|
||||
|
||||
|
||||
class FocalNetLayer(nn.Module):
|
||||
r"""Focal Modulation Network layer (block).
|
||||
|
||||
Args:
|
||||
config (`FocalNetConfig`):
|
||||
Model config.
|
||||
index (`int`):
|
||||
Layer index.
|
||||
dim (`int`):
|
||||
Number of input channels.
|
||||
input_resolution (`Tuple[int]`):
|
||||
Input resulotion.
|
||||
drop_path (`float`, *optional*, defaults to 0.0):
|
||||
Stochastic depth rate.
|
||||
"""
|
||||
|
||||
def __init__(self, config, index, dim, input_resolution, drop_path=0.0):
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
|
||||
# layer-specific attributes
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
|
||||
# general attributes
|
||||
self.drop = config.hidden_dropout_prob
|
||||
self.use_post_layernorm = config.use_post_layernorm
|
||||
|
||||
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
||||
self.modulation = FocalNetModulation(
|
||||
config=config,
|
||||
index=index,
|
||||
dim=dim,
|
||||
projection_dropout=self.drop,
|
||||
)
|
||||
|
||||
self.drop_path = FocalNetDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
||||
mlp_hidden_dim = int(dim * config.mlp_ratio)
|
||||
self.mlp = FocalNetMlp(config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=self.drop)
|
||||
|
||||
self.gamma_1 = 1.0
|
||||
self.gamma_2 = 1.0
|
||||
if config.use_layerscale:
|
||||
self.gamma_1 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True)
|
||||
self.gamma_2 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True)
|
||||
|
||||
def forward(self, hidden_state, input_dimensions):
|
||||
height, width = input_dimensions
|
||||
batch_size, _, num_channels = hidden_state.shape
|
||||
shortcut = hidden_state
|
||||
|
||||
# Focal Modulation
|
||||
hidden_state = hidden_state if self.use_post_layernorm else self.norm1(hidden_state)
|
||||
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
|
||||
hidden_state = self.modulation(hidden_state).view(batch_size, height * width, num_channels)
|
||||
hidden_state = hidden_state if not self.use_post_layernorm else self.norm1(hidden_state)
|
||||
|
||||
# FFN
|
||||
hidden_state = shortcut + self.drop_path(self.gamma_1 * hidden_state)
|
||||
hidden_state = hidden_state + self.drop_path(
|
||||
self.gamma_2
|
||||
* (self.norm2(self.mlp(hidden_state)) if self.use_post_layernorm else self.mlp(self.norm2(hidden_state)))
|
||||
)
|
||||
|
||||
return hidden_state
|
||||
|
||||
|
||||
class FocalNetStage(nn.Module):
|
||||
def __init__(self, config, index, input_resolution):
|
||||
super().__init__()
|
||||
|
||||
self.config = config
|
||||
self.num_stages = len(config.depths)
|
||||
|
||||
embed_dim = [config.embed_dim * (2**i) for i in range(self.num_stages)]
|
||||
dim = embed_dim[index]
|
||||
out_dim = embed_dim[index + 1] if (index < self.num_stages - 1) else None
|
||||
downsample = FocalNetPatchEmbeddings if (index < self.num_stages - 1) else None
|
||||
|
||||
# stochastic depth decay rule
|
||||
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
|
||||
drop_path = dpr[sum(config.depths[:index]) : sum(config.depths[: index + 1])]
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
FocalNetLayer(
|
||||
config=config,
|
||||
index=index,
|
||||
dim=dim,
|
||||
input_resolution=input_resolution,
|
||||
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
||||
)
|
||||
for i in range(config.depths[index])
|
||||
]
|
||||
)
|
||||
|
||||
if downsample is not None:
|
||||
self.downsample = downsample(
|
||||
config=config,
|
||||
image_size=input_resolution,
|
||||
patch_size=2,
|
||||
num_channels=dim,
|
||||
embed_dim=out_dim,
|
||||
add_norm=True,
|
||||
use_conv_embed=config.use_conv_embed,
|
||||
is_stem=False,
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
|
||||
self.pointing = False
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int]) -> Tuple[torch.Tensor]:
|
||||
height, width = input_dimensions
|
||||
for layer_module in self.layers:
|
||||
hidden_states = layer_module(hidden_states, input_dimensions)
|
||||
|
||||
hidden_states_before_downsampling = hidden_states
|
||||
if self.downsample is not None:
|
||||
height, width = input_dimensions
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(
|
||||
hidden_states_before_downsampling.shape[0], -1, height, width
|
||||
)
|
||||
hidden_states, output_dimensions = self.downsample(hidden_states)
|
||||
|
||||
else:
|
||||
output_dimensions = (height, width, height, width)
|
||||
|
||||
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
|
||||
|
||||
return stage_outputs
|
||||
|
||||
|
||||
class FocalNetEncoder(nn.Module):
|
||||
def __init__(self, config, grid_size):
|
||||
super().__init__()
|
||||
self.num_stages = len(config.depths)
|
||||
self.config = config
|
||||
|
||||
self.stages = nn.ModuleList(
|
||||
[
|
||||
FocalNetStage(
|
||||
config=config,
|
||||
index=i_layer,
|
||||
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
|
||||
)
|
||||
for i_layer in range(self.num_stages)
|
||||
]
|
||||
)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
input_dimensions: Tuple[int, int],
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
output_hidden_states_before_downsampling: Optional[bool] = False,
|
||||
return_dict: Optional[bool] = True,
|
||||
) -> Union[Tuple, FocalNetEncoderOutput]:
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_reshaped_hidden_states = () if output_hidden_states else None
|
||||
|
||||
if output_hidden_states:
|
||||
batch_size, _, hidden_size = hidden_states.shape
|
||||
# rearrange b (h w) c -> b c h w
|
||||
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
|
||||
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
||||
all_hidden_states += (hidden_states,)
|
||||
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
||||
|
||||
for i, stage_module in enumerate(self.stages):
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
stage_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(stage_module),
|
||||
hidden_states,
|
||||
input_dimensions,
|
||||
)
|
||||
else:
|
||||
stage_outputs = stage_module(hidden_states, input_dimensions)
|
||||
|
||||
hidden_states = stage_outputs[0]
|
||||
hidden_states_before_downsampling = stage_outputs[1]
|
||||
output_dimensions = stage_outputs[2]
|
||||
|
||||
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
|
||||
|
||||
if output_hidden_states and output_hidden_states_before_downsampling:
|
||||
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
|
||||
# rearrange b (h w) c -> b c h w
|
||||
# here we use the original (not downsampled) height and width
|
||||
reshaped_hidden_state = hidden_states_before_downsampling.view(
|
||||
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
|
||||
)
|
||||
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
||||
all_hidden_states += (hidden_states_before_downsampling,)
|
||||
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
||||
elif output_hidden_states and not output_hidden_states_before_downsampling:
|
||||
batch_size, _, hidden_size = hidden_states.shape
|
||||
# rearrange b (h w) c -> b c h w
|
||||
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
|
||||
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
||||
all_hidden_states += (hidden_states,)
|
||||
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
||||
|
||||
return FocalNetEncoderOutput(
|
||||
last_hidden_state=hidden_states,
|
||||
hidden_states=all_hidden_states,
|
||||
reshaped_hidden_states=all_reshaped_hidden_states,
|
||||
)
|
||||
|
||||
|
||||
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->FocalNet,swin->focalnet
|
||||
class FocalNetPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = FocalNetConfig
|
||||
base_model_prefix = "focalnet"
|
||||
main_input_name = "pixel_values"
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, FocalNetEncoder):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
|
||||
FOCALNET_START_DOCSTRING = r"""
|
||||
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
||||
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||||
behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`FocalNetConfig`]): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the
|
||||
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
FOCALNET_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||||
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
||||
[`AutoImageProcessor.__call__`] for details.
|
||||
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare FocalNet Model outputting raw hidden-states without any specific head on top.",
|
||||
FOCALNET_START_DOCSTRING,
|
||||
)
|
||||
class FocalNetModel(FocalNetPreTrainedModel):
|
||||
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.num_stages = len(config.depths)
|
||||
self.num_features = int(config.embed_dim * 2 ** (self.num_stages - 1))
|
||||
|
||||
self.embeddings = FocalNetEmbeddings(config, use_mask_token=use_mask_token)
|
||||
self.encoder = FocalNetEncoder(config, self.embeddings.patch_grid)
|
||||
|
||||
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
|
||||
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings.patch_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
output_type=FocalNetModelOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
modality="vision",
|
||||
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, FocalNetModelOutput]:
|
||||
r"""
|
||||
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
||||
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
||||
"""
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if pixel_values is None:
|
||||
raise ValueError("You have to specify pixel_values")
|
||||
|
||||
embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
|
||||
|
||||
encoder_outputs = self.encoder(
|
||||
embedding_output,
|
||||
input_dimensions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
sequence_output = encoder_outputs[0]
|
||||
sequence_output = self.layernorm(sequence_output)
|
||||
|
||||
pooled_output = None
|
||||
if self.pooler is not None:
|
||||
pooled_output = self.pooler(sequence_output.transpose(1, 2))
|
||||
pooled_output = torch.flatten(pooled_output, 1)
|
||||
|
||||
if not return_dict:
|
||||
output = (sequence_output, pooled_output) + encoder_outputs[1:]
|
||||
|
||||
return output
|
||||
|
||||
return FocalNetModelOutput(
|
||||
last_hidden_state=sequence_output,
|
||||
pooler_output=pooled_output,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
|
||||
)
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""FocalNet Model with a decoder on top for masked image modeling.
|
||||
|
||||
This follows the same implementation as in [SimMIM](https://arxiv.org/abs/2111.09886).
|
||||
|
||||
<Tip>
|
||||
|
||||
Note that we provide a script to pre-train this model on custom data in our [examples
|
||||
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
||||
|
||||
</Tip>
|
||||
""",
|
||||
FOCALNET_START_DOCSTRING,
|
||||
)
|
||||
class FocalNetForMaskedImageModeling(FocalNetPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.focalnet = FocalNetModel(config, add_pooling_layer=False, use_mask_token=True)
|
||||
|
||||
self.num_stages = len(config.depths)
|
||||
num_features = int(config.embed_dim * 2 ** (self.num_stages - 1))
|
||||
self.decoder = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1
|
||||
),
|
||||
nn.PixelShuffle(config.encoder_stride),
|
||||
)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=FocalNetMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, FocalNetMaskedImageModelingOutput]:
|
||||
r"""
|
||||
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
|
||||
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
||||
|
||||
Returns:
|
||||
|
||||
Examples:
|
||||
```python
|
||||
>>> from transformers import AutoImageProcessor, FocalNetConfig, FocalNetForMaskedImageModeling
|
||||
>>> import torch
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-base-simmim-window6-192")
|
||||
>>> config = FocalNetConfig()
|
||||
>>> model = FocalNetForMaskedImageModeling(config)
|
||||
|
||||
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
|
||||
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
|
||||
>>> # create random boolean mask of shape (batch_size, num_patches)
|
||||
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
|
||||
|
||||
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
|
||||
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.logits
|
||||
>>> list(reconstructed_pixel_values.shape)
|
||||
[1, 3, 192, 192]
|
||||
```"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.focalnet(
|
||||
pixel_values,
|
||||
bool_masked_pos=bool_masked_pos,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
sequence_output = outputs[0]
|
||||
# Reshape to (batch_size, num_channels, height, width)
|
||||
sequence_output = sequence_output.transpose(1, 2)
|
||||
batch_size, num_channels, sequence_length = sequence_output.shape
|
||||
height = width = math.floor(sequence_length**0.5)
|
||||
sequence_output = sequence_output.reshape(batch_size, num_channels, height, width)
|
||||
|
||||
# Reconstruct pixel values
|
||||
reconstructed_pixel_values = self.decoder(sequence_output)
|
||||
|
||||
masked_im_loss = None
|
||||
if bool_masked_pos is not None:
|
||||
size = self.config.image_size // self.config.patch_size
|
||||
bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
|
||||
mask = (
|
||||
bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
|
||||
.repeat_interleave(self.config.patch_size, 2)
|
||||
.unsqueeze(1)
|
||||
.contiguous()
|
||||
)
|
||||
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
|
||||
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
|
||||
|
||||
if not return_dict:
|
||||
output = (reconstructed_pixel_values,) + outputs[2:]
|
||||
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
|
||||
|
||||
return FocalNetMaskedImageModelingOutput(
|
||||
loss=masked_im_loss,
|
||||
reconstruction=reconstructed_pixel_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
reshaped_hidden_states=outputs.reshaped_hidden_states,
|
||||
)
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"""
|
||||
FocalNet Model with an image classification head on top (a linear layer on top of the pooled output) e.g. for
|
||||
ImageNet.
|
||||
""",
|
||||
FOCALNET_START_DOCSTRING,
|
||||
)
|
||||
class FocalNetForImageClassification(FocalNetPreTrainedModel):
|
||||
# Copied from transformers.models.swin.modeling_swin.SwinForImageClassification.__init__ with Swin->FocalNet, swin->focalnet
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.num_labels = config.num_labels
|
||||
self.focalnet = FocalNetModel(config)
|
||||
|
||||
# Classifier head
|
||||
self.classifier = (
|
||||
nn.Linear(self.focalnet.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
||||
)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
|
||||
@add_code_sample_docstrings(
|
||||
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
||||
output_type=FocalNetImageClassifierOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, FocalNetImageClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.focalnet(
|
||||
pixel_values,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
pooled_output = outputs[1]
|
||||
|
||||
logits = self.classifier(pooled_output)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(logits, labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return FocalNetImageClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=outputs.hidden_states,
|
||||
reshaped_hidden_states=outputs.reshaped_hidden_states,
|
||||
)
|
@ -2992,6 +2992,37 @@ class FNetPreTrainedModel(metaclass=DummyObject):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
||||
|
||||
|
||||
class FocalNetForImageClassification(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class FocalNetForMaskedImageModeling(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class FocalNetModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class FocalNetPreTrainedModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class FSMTForConditionalGeneration(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
0
tests/models/focalnet/__init__.py
Normal file
0
tests/models/focalnet/__init__.py
Normal file
395
tests/models/focalnet/test_modeling_focalnet.py
Normal file
395
tests/models/focalnet/test_modeling_focalnet.py
Normal file
@ -0,0 +1,395 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Testing suite for the PyTorch FocalNet model. """
|
||||
|
||||
import collections
|
||||
import inspect
|
||||
import unittest
|
||||
|
||||
from transformers import FocalNetConfig
|
||||
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
||||
from transformers.utils import cached_property, is_torch_available, is_vision_available
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from transformers import FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel
|
||||
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import AutoImageProcessor
|
||||
|
||||
|
||||
class FocalNetModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=13,
|
||||
image_size=32,
|
||||
patch_size=2,
|
||||
num_channels=3,
|
||||
embed_dim=16,
|
||||
depths=[1, 2, 1],
|
||||
num_heads=[2, 2, 4],
|
||||
window_size=2,
|
||||
mlp_ratio=2.0,
|
||||
qkv_bias=True,
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
drop_path_rate=0.1,
|
||||
hidden_act="gelu",
|
||||
use_absolute_embeddings=False,
|
||||
patch_norm=True,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-5,
|
||||
is_training=True,
|
||||
scope=None,
|
||||
use_labels=True,
|
||||
type_sequence_label_size=10,
|
||||
encoder_stride=8,
|
||||
out_features=["stage1", "stage2"],
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.image_size = image_size
|
||||
self.patch_size = patch_size
|
||||
self.num_channels = num_channels
|
||||
self.embed_dim = embed_dim
|
||||
self.depths = depths
|
||||
self.num_heads = num_heads
|
||||
self.window_size = window_size
|
||||
self.mlp_ratio = mlp_ratio
|
||||
self.qkv_bias = qkv_bias
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.drop_path_rate = drop_path_rate
|
||||
self.hidden_act = hidden_act
|
||||
self.use_absolute_embeddings = use_absolute_embeddings
|
||||
self.patch_norm = patch_norm
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.initializer_range = initializer_range
|
||||
self.is_training = is_training
|
||||
self.scope = scope
|
||||
self.use_labels = use_labels
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.encoder_stride = encoder_stride
|
||||
self.out_features = out_features
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
||||
|
||||
labels = None
|
||||
if self.use_labels:
|
||||
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
|
||||
config = self.get_config()
|
||||
|
||||
return config, pixel_values, labels
|
||||
|
||||
def get_config(self):
|
||||
return FocalNetConfig(
|
||||
image_size=self.image_size,
|
||||
patch_size=self.patch_size,
|
||||
num_channels=self.num_channels,
|
||||
embed_dim=self.embed_dim,
|
||||
depths=self.depths,
|
||||
num_heads=self.num_heads,
|
||||
window_size=self.window_size,
|
||||
mlp_ratio=self.mlp_ratio,
|
||||
qkv_bias=self.qkv_bias,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
drop_path_rate=self.drop_path_rate,
|
||||
hidden_act=self.hidden_act,
|
||||
use_absolute_embeddings=self.use_absolute_embeddings,
|
||||
path_norm=self.patch_norm,
|
||||
layer_norm_eps=self.layer_norm_eps,
|
||||
initializer_range=self.initializer_range,
|
||||
encoder_stride=self.encoder_stride,
|
||||
out_features=self.out_features,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values, labels):
|
||||
model = FocalNetModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values)
|
||||
|
||||
expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
|
||||
expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))
|
||||
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
|
||||
|
||||
def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
|
||||
model = FocalNetForMaskedImageModeling(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values)
|
||||
self.parent.assertEqual(
|
||||
result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
|
||||
)
|
||||
|
||||
# test greyscale images
|
||||
config.num_channels = 1
|
||||
model = FocalNetForMaskedImageModeling(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
|
||||
result = model(pixel_values)
|
||||
self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size))
|
||||
|
||||
def create_and_check_for_image_classification(self, config, pixel_values, labels):
|
||||
config.num_labels = self.type_sequence_label_size
|
||||
model = FocalNetForImageClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values, labels=labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
||||
|
||||
# test greyscale images
|
||||
config.num_channels = 1
|
||||
model = FocalNetForImageClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
|
||||
result = model(pixel_values)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
||||
config, pixel_values, labels = config_and_inputs
|
||||
inputs_dict = {"pixel_values": pixel_values}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_torch
|
||||
class FocalNetModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
all_model_classes = (
|
||||
(
|
||||
FocalNetModel,
|
||||
FocalNetForImageClassification,
|
||||
FocalNetForMaskedImageModeling,
|
||||
)
|
||||
if is_torch_available()
|
||||
else ()
|
||||
)
|
||||
fx_compatible = False
|
||||
|
||||
test_pruning = False
|
||||
test_resize_embeddings = False
|
||||
test_head_masking = False
|
||||
has_attentions = False
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = FocalNetModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=FocalNetConfig, embed_dim=37)
|
||||
|
||||
def test_config(self):
|
||||
self.create_and_test_config_common_properties()
|
||||
self.config_tester.create_and_test_config_to_json_string()
|
||||
self.config_tester.create_and_test_config_to_json_file()
|
||||
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
||||
self.config_tester.create_and_test_config_with_num_labels()
|
||||
self.config_tester.check_config_can_be_init_without_params()
|
||||
self.config_tester.check_config_arguments_init()
|
||||
|
||||
def create_and_test_config_common_properties(self):
|
||||
return
|
||||
|
||||
def test_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||
|
||||
def test_for_masked_image_modeling(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)
|
||||
|
||||
def test_for_image_classification(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
|
||||
|
||||
@unittest.skip(reason="FocalNet does not use inputs_embeds")
|
||||
def test_inputs_embeds(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="FocalNet Transformer does not use feedforward chunking")
|
||||
def test_feed_forward_chunking(self):
|
||||
pass
|
||||
|
||||
def test_model_common_attributes(self):
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config)
|
||||
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
||||
x = model.get_output_embeddings()
|
||||
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
||||
|
||||
def test_forward_signature(self):
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config)
|
||||
signature = inspect.signature(model.forward)
|
||||
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
||||
arg_names = [*signature.parameters.keys()]
|
||||
|
||||
expected_arg_names = ["pixel_values"]
|
||||
self.assertListEqual(arg_names[:1], expected_arg_names)
|
||||
|
||||
def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
|
||||
model = model_class(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
||||
|
||||
hidden_states = outputs.hidden_states
|
||||
|
||||
expected_num_layers = getattr(
|
||||
self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
|
||||
)
|
||||
self.assertEqual(len(hidden_states), expected_num_layers)
|
||||
|
||||
# FocalNet has a different seq_length
|
||||
patch_size = (
|
||||
config.patch_size
|
||||
if isinstance(config.patch_size, collections.abc.Iterable)
|
||||
else (config.patch_size, config.patch_size)
|
||||
)
|
||||
|
||||
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||||
|
||||
self.assertListEqual(
|
||||
list(hidden_states[0].shape[-2:]),
|
||||
[num_patches, self.model_tester.embed_dim],
|
||||
)
|
||||
|
||||
reshaped_hidden_states = outputs.reshaped_hidden_states
|
||||
self.assertEqual(len(reshaped_hidden_states), expected_num_layers)
|
||||
|
||||
batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
|
||||
reshaped_hidden_states = (
|
||||
reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1)
|
||||
)
|
||||
self.assertListEqual(
|
||||
list(reshaped_hidden_states.shape[-2:]),
|
||||
[num_patches, self.model_tester.embed_dim],
|
||||
)
|
||||
|
||||
def test_hidden_states_output(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
image_size = (
|
||||
self.model_tester.image_size
|
||||
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
|
||||
else (self.model_tester.image_size, self.model_tester.image_size)
|
||||
)
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
inputs_dict["output_hidden_states"] = True
|
||||
self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
|
||||
|
||||
# check that output_hidden_states also work using config
|
||||
del inputs_dict["output_hidden_states"]
|
||||
config.output_hidden_states = True
|
||||
|
||||
self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
|
||||
|
||||
def test_hidden_states_output_with_padding(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
config.patch_size = 3
|
||||
|
||||
image_size = (
|
||||
self.model_tester.image_size
|
||||
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
|
||||
else (self.model_tester.image_size, self.model_tester.image_size)
|
||||
)
|
||||
patch_size = (
|
||||
config.patch_size
|
||||
if isinstance(config.patch_size, collections.abc.Iterable)
|
||||
else (config.patch_size, config.patch_size)
|
||||
)
|
||||
|
||||
padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
|
||||
padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
inputs_dict["output_hidden_states"] = True
|
||||
self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
|
||||
|
||||
# check that output_hidden_states also work using config
|
||||
del inputs_dict["output_hidden_states"]
|
||||
config.output_hidden_states = True
|
||||
self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
model = FocalNetModel.from_pretrained(model_name)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
def test_initialization(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
configs_no_init = _config_zero_init(config)
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config=configs_no_init)
|
||||
for name, param in model.named_parameters():
|
||||
if "embeddings" not in name and param.requires_grad:
|
||||
self.assertIn(
|
||||
((param.data.mean() * 1e9).round() / 1e9).item(),
|
||||
[0.0, 1.0],
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
|
||||
@require_vision
|
||||
@require_torch
|
||||
class FocalNetModelIntegrationTest(unittest.TestCase):
|
||||
@cached_property
|
||||
def default_image_processor(self):
|
||||
# TODO update organization
|
||||
return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny") if is_vision_available() else None
|
||||
|
||||
@slow
|
||||
def test_inference_image_classification_head(self):
|
||||
model = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny").to(torch_device)
|
||||
image_processor = self.default_image_processor
|
||||
|
||||
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
||||
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
||||
|
||||
# forward pass
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# verify the logits
|
||||
expected_shape = torch.Size((1, 1000))
|
||||
self.assertEqual(outputs.logits.shape, expected_shape)
|
||||
expected_slice = torch.tensor([0.2166, -0.4368, 0.2191]).to(torch_device)
|
||||
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
|
||||
self.assertTrue(outputs.logits.argmax(dim=-1).item(), 281)
|
Loading…
Reference in New Issue
Block a user