mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
🌐 [i18n-KO] Translated perf_train_tpu_tf.md
to Korean (#25433)
* docs: ko: perf_train_tpu_tf.md * feat: nmt and manual edit perf_train_tpu_tf.md * fix: resolve suggestions Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com> Co-authored-by: Kim haewon <ehdvkf02@naver.com> Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com> --------- Co-authored-by: Sangam Lee <74291999+augustinLib@users.noreply.github.com> Co-authored-by: Kim haewon <ehdvkf02@naver.com> Co-authored-by: Kihoon Son <75935546+kihoon71@users.noreply.github.com>
This commit is contained in:
parent
6f4424bb08
commit
4d64157ed3
@ -119,8 +119,8 @@
|
||||
title: 다중 CPU에서 훈련하기
|
||||
- local: in_translation
|
||||
title: (번역중) Training on TPUs
|
||||
- local: in_translation
|
||||
title: (번역중) Training on TPU with TensorFlow
|
||||
- local: perf_train_tpu_tf
|
||||
title: TensorFlow로 TPU에서 훈련하기
|
||||
- local: in_translation
|
||||
title: (번역중) Training on Specialized Hardware
|
||||
- local: perf_infer_cpu
|
||||
|
162
docs/source/ko/perf_train_tpu_tf.md
Normal file
162
docs/source/ko/perf_train_tpu_tf.md
Normal file
@ -0,0 +1,162 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# TensorFlow로 TPU에서 훈련하기[[training-on-tpu-with-tensorflow]]
|
||||
|
||||
<Tip>
|
||||
|
||||
자세한 설명이 필요하지 않고 바로 TPU 샘플 코드를 시작하고 싶다면 [우리의 TPU 예제 노트북!](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)을 확인하세요.
|
||||
|
||||
</Tip>
|
||||
|
||||
### TPU가 무엇인가요?[[what-is-a-tpu]]
|
||||
|
||||
TPU는 **텐서 처리 장치**입니다. Google에서 설계한 하드웨어로, GPU처럼 신경망 내에서 텐서 연산을 더욱 빠르게 처리하기 위해 사용됩니다. 네트워크 훈련과 추론 모두에 사용할 수 있습니다. 일반적으로 Google의 클라우드 서비스를 통해 이용할 수 있지만, Google Colab과 Kaggle Kernel을 통해 소규모 TPU를 무료로 직접 이용할 수도 있습니다.
|
||||
|
||||
[🤗 Transformers의 모든 Tensorflow 모델은 Keras 모델](https://huggingface.co/blog/tensorflow-philosophy)이기 때문에, 이 문서에서 다루는 대부분의 메소드는 대체로 모든 Keras 모델을 위한 TPU 훈련에 적용할 수 있습니다! 하지만 Transformer와 데이터 세트의 HuggingFace 생태계(hug-o-system?)에 특화된 몇 가지 사항이 있으며, 해당 사항에 대해 설명할 때 반드시 언급하도록 하겠습니다.
|
||||
|
||||
### 어떤 종류의 TPU가 있나요?[[what-kinds-of-tpu-are-available]]
|
||||
|
||||
신규 사용자는 TPU의 범위와 다양한 이용 방법에 대해 매우 혼란스러워하는 경우가 많습니다. **TPU 노드**와 **TPU VM**의 차이점은 가장 먼저 이해해야 할 핵심적인 구분 사항입니다.
|
||||
|
||||
**TPU 노드**를 사용한다면, 실제로는 원격 TPU를 간접적으로 이용하는 것입니다. 네트워크와 데이터 파이프라인을 초기화한 다음, 이를 원격 노드로 전달할 별도의 VM이 필요합니다. Google Colab에서 TPU를 사용하는 경우, **TPU 노드** 방식으로 이용하게 됩니다.
|
||||
|
||||
TPU 노드를 사용하는 것은 이를 사용하지 않는 사용자에게 예기치 않은 현상이 발생하기도 합니다! 특히, TPU는 파이썬 코드를 실행하는 기기(machine)와 물리적으로 다른 시스템에 있기 때문에 로컬 기기에 데이터를 저장할 수 없습니다. 즉, 컴퓨터의 내부 저장소에서 가져오는 데이터 파이프라인은 절대 작동하지 않습니다! 로컬 기기에 데이터를 저장하는 대신에, 데이터 파이프라인이 원격 TPU 노드에서 실행 중일 때에도 데이터 파이프라인이 계속 이용할 수 있는 Google Cloud Storage에 데이터를 저장해야 합니다.
|
||||
|
||||
<Tip>
|
||||
|
||||
메모리에 있는 모든 데이터를 `np.ndarray` 또는 `tf.Tensor`로 맞출 수 있다면, Google Cloud Storage에 업로드할 필요 없이, Colab 또는 TPU 노드를 사용해서 해당 데이터에 `fit()` 할 수 있습니다.
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip>
|
||||
|
||||
**🤗특수한 Hugging Face 팁🤗:** TF 코드 예제에서 볼 수 있는 `Dataset.to_tf_dataset()` 메소드와 그 상위 래퍼(wrapper)인 `model.prepare_tf_dataset()`는 모두 TPU 노드에서 작동하지 않습니다. 그 이유는 `tf.data.Dataset`을 생성하더라도 “순수한” `tf.data` 파이프라인이 아니며 `tf.numpy_function` 또는 `Dataset.from_generator()`를 사용하여 기본 HuggingFace `Dataset`에서 데이터를 전송하기 때문입니다. 이 HuggingFace `Dataset`는 로컬 디스크에 있는 데이터로 지원되며 원격 TPU 노드가 읽을 수 없습니다.
|
||||
|
||||
</Tip>
|
||||
|
||||
TPU를 이용하는 두 번째 방법은 **TPU VM**을 사용하는 것입니다. TPU VM을 사용할 때, GPU VM에서 훈련하는 것과 같이 TPU가 장착된 기기에 직접 연결합니다. 특히 데이터 파이프라인과 관련하여, TPU VM은 대체로 작업하기 더 쉽습니다. 위의 모든 경고는 TPU VM에는 해당되지 않습니다!
|
||||
|
||||
이 문서는 의견이 포함된 문서이며, 저희의 의견이 여기에 있습니다: **가능하면 TPU 노드를 사용하지 마세요.** TPU 노드는 TPU VM보다 더 복잡하고 디버깅하기가 더 어렵습니다. 또한 향후에는 지원되지 않을 가능성이 높습니다. Google의 최신 TPU인 TPUv4는 TPU VM으로만 이용할 수 있으므로, TPU 노드는 점점 더 "구식" 이용 방법이 될 것으로 전망됩니다. 그러나 TPU 노드를 사용하는 Colab과 Kaggle Kernel에서만 무료 TPU 이용이 가능한 것으로 확인되어, 필요한 경우 이를 다루는 방법을 설명해 드리겠습니다! 이에 대한 자세한 설명이 담긴 코드 샘플은 [TPU 예제 노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)에서 확인하시기 바랍니다.
|
||||
|
||||
### 어떤 크기의 TPU를 사용할 수 있나요?[[what-sizes-of-tpu-are-available]]
|
||||
|
||||
단일 TPU(v2-8/v3-8/v4-8)는 8개의 복제본(replicas)을 실행합니다. TPU는 수백 또는 수천 개의 복제본을 동시에 실행할 수 있는 **pod**로 존재합니다. 단일 TPU를 하나 이상 사용하지만 전체 Pod보다 적게 사용하는 경우(예를 들면, v3-32), TPU 구성을 **pod 슬라이스**라고 합니다.
|
||||
|
||||
Colab을 통해 무료 TPU에 이용하는 경우, 기본적으로 단일 v2-8 TPU를 제공받습니다.
|
||||
|
||||
### XLA에 대해 들어본 적이 있습니다. XLA란 무엇이고 TPU와 어떤 관련이 있나요?[[i-keep-hearing-about-this-xla-thing-whats-xla-and-how-does-it-relate-to-tpus]]
|
||||
|
||||
XLA는 최적화 컴파일러로, TensorFlow와 JAX에서 모두 사용됩니다. JAX에서는 유일한 컴파일러이지만, TensorFlow에서는 선택 사항입니다(하지만 TPU에서는 필수입니다!). Keras 모델을 훈련할 때 이를 활성화하는 가장 쉬운 방법은 `jit_compile=True` 인수를 `model.compile()`에 전달하는 것입니다. 오류가 없고 성능이 양호하다면, TPU로 전환할 준비가 되었다는 좋은 신호입니다!
|
||||
|
||||
TPU에서 디버깅하는 것은 대개 CPU/GPU보다 조금 더 어렵기 때문에, TPU에서 시도하기 전에 먼저 XLA로 CPU/GPU에서 코드를 실행하는 것을 권장합니다. 물론 오래 학습할 필요는 없습니다. 즉, 모델과 데이터 파이프라인이 예상대로 작동하는지 확인하기 위해 몇 단계만 거치면 됩니다.
|
||||
|
||||
<Tip>
|
||||
|
||||
XLA로 컴파일된 코드는 대체로 더 빠릅니다. 따라서 TPU에서 실행할 계획이 없더라도, `jit_compile=True`를 추가하면 성능이 향상될 수 있습니다. 하지만 XLA 호환성에 대한 아래 주의 사항을 반드시 확인하세요!
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
**뼈아픈 경험에서 얻은 팁:** `jit_compile=True`를 사용하면 속도를 높이고 CPU/GPU 코드가 XLA와 호환되는지 검증할 수 있는 좋은 방법이지만, 실제 TPU에서 훈련할 때 그대로 남겨두면 많은 문제를 초래할 수 있습니다. XLA 컴파일은 TPU에서 암시적으로 이뤄지므로, 실제 TPU에서 코드를 실행하기 전에 해당 줄을 제거하는 것을 잊지 마세요!
|
||||
|
||||
</Tip>
|
||||
|
||||
### 제 XLA 모델과 호환하려면 어떻게 해야 하나요?[[how-do-i-make-my-model-xla-compatible]]
|
||||
|
||||
대부분의 경우, 여러분의 코드는 이미 XLA와 호환될 것입니다! 그러나 표준 TensorFlow에서 작동하지만, XLA에서는 작동하지 않는 몇 가지 사항이 있습니다. 이를 아래 세 가지 핵심 규칙으로 간추렸습니다:
|
||||
|
||||
<Tip>
|
||||
|
||||
**특수한 HuggingFace 팁🤗:** 저희는 TensorFlow 모델과 손실 함수를 XLA와 호환되도록 재작성하는 데 많은 노력을 기울였습니다. 저희의 모델과 손실 함수는 대개 기본적으로 규칙 #1과 #2를 따르므로 `transformers` 모델을 사용하는 경우, 이를 건너뛸 수 있습니다. 하지만 자체 모델과 손실 함수를 작성할 때는 이러한 규칙을 잊지 마세요!
|
||||
|
||||
</Tip>
|
||||
|
||||
#### XLA 규칙 #1: 코드에서 “데이터 종속 조건문”을 사용할 수 없습니다[[xla-rule-1-your-code-cannot-have-datadependent-conditionals]]
|
||||
|
||||
어떤 `if`문도 `tf.Tensor` 내부의 값에 종속될 수 없다는 것을 의미합니다. 예를 들어, 이 코드 블록은 XLA로 컴파일할 수 없습니다!
|
||||
|
||||
```python
|
||||
if tf.reduce_sum(tensor) > 10:
|
||||
tensor = tensor / 2.0
|
||||
```
|
||||
|
||||
처음에는 매우 제한적으로 보일 수 있지만, 대부분의 신경망 코드에서는 이를 수행할 필요가 없습니다. `tf.cond`를 사용하거나([여기](https://www.tensorflow.org/api_docs/python/tf/cond) 문서를 참조), 다음과 같이 조건문을 제거하고 대신 지표 변수를 사용하는 영리한 수학 트릭을 찾아내어 이 제한을 우회할 수 있습니다:
|
||||
|
||||
```python
|
||||
sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32)
|
||||
tensor = tensor / (1.0 + sum_over_10)
|
||||
```
|
||||
|
||||
이 코드는 위의 코드와 정확히 동일한 효과를 구현하지만, 조건문을 제거하여 문제 없이 XLA로 컴파일되도록 합니다!
|
||||
|
||||
#### XLA 규칙 #2: 코드에서 "데이터 종속 크기"를 가질 수 없습니다[[xla-rule-2-your-code-cannot-have-datadependent-shapes]]
|
||||
|
||||
코드에서 모든 `tf.Tensor` 객체의 크기가 해당 값에 종속될 수 없다는 것을 의미합니다. 예를 들어, `tf.unique` 함수는 입력에서 각 고유 값의 인스턴스 하나를 포함하는 `tensor`를 반환하기 때문에 XLA로 컴파일할 수 없습니다. 이 출력의 크기는 입력 `Tensor`가 얼마나 반복적인지에 따라 분명히 달라질 것이므로, XLA는 이를 처리하지 못합니다!
|
||||
|
||||
일반적으로, 대부분의 신경망 코드는 기본값으로 규칙 2를 따릅니다. 그러나 문제가 되는 몇 가지 대표적인 사례가 있습니다. 가장 흔한 사례 중 하나는 **레이블 마스킹**을 사용하여 손실(loss)을 계산할 때, 해당 위치를 무시하도록 나타내기 위해 레이블을 음수 값으로 설정하는 경우입니다. 레이블 마스킹을 지원하는 NumPy나 PyTorch 손실 함수를 보면 [불 인덱싱](https://numpy.org/doc/stable/user/basics.indexing.html#boolean-array-indexing)을 사용하는 다음과 같은 코드를 자주 접할 수 있습니다:
|
||||
|
||||
```python
|
||||
label_mask = labels >= 0
|
||||
masked_outputs = outputs[label_mask]
|
||||
masked_labels = labels[label_mask]
|
||||
loss = compute_loss(masked_outputs, masked_labels)
|
||||
mean_loss = torch.mean(loss)
|
||||
```
|
||||
|
||||
이 코드는 NumPy나 PyTorch에서는 문제 없이 작동하지만, XLA에서는 손상됩니다! 왜 그럴까요? 얼마나 많은 위치가 마스킹되는지에 따라 `masked_outputs`와 `masked_labels`의 크기가 달라져서, **데이터 종속 크기**가 되기 때문입니다. 그러나 규칙 #1과 마찬가지로, 이 코드를 다시 작성하면 데이터 종속적 모양 크기가 정확히 동일한 출력을 산출할 수 있습니다.
|
||||
|
||||
```python
|
||||
label_mask = tf.cast(labels >= 0, tf.float32)
|
||||
loss = compute_loss(outputs, labels)
|
||||
loss = loss * label_mask # Set negative label positions to 0
|
||||
mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask)
|
||||
```
|
||||
|
||||
여기서, 모든 위치에 대한 손실을 계산하지만, 평균을 계산할 때 분자와 분모 모두에서 마스크된 위치를 0으로 처리합니다. 이는 데이터 종속 크기를 방지하고 XLA 호환성을 유지하면서 첫 번째 블록과 정확히 동일한 결과를 산출합니다. 규칙 #1에서와 동일한 트릭을 사용하여 `tf.bool`을 `tf.float32`로 변환하고 이를 지표 변수로 사용합니다. 해당 트릭은 매우 유용하며, 자체 코드를 XLA로 변환해야 할 경우 기억해 두세요!
|
||||
|
||||
#### XLA 규칙 #3: XLA는 각기 다른 입력 크기가 나타날 때마다 모델을 다시 컴파일해야 합니다[[xla-rule-3-xla-will-need-to-recompile-your-model-for-every-different-input-shape-it-sees]]
|
||||
|
||||
이것은 가장 큰 문제입니다. 입력 크기가 매우 가변적인 경우, XLA는 모델을 반복해서 다시 컴파일해야 하므로 성능에 큰 문제가 발생할 수 있습니다. 이 문제는 토큰화 후 입력 텍스트의 길이가 가변적인 NLP 모델에서 주로 발생합니다. 다른 모달리티에서는 정적 크기가 더 흔하며, 해당 규칙이 훨씬 덜 문제시 됩니다.
|
||||
|
||||
규칙 #3을 어떻게 우회할 수 있을까요? 핵심은 **패딩**입니다. 모든 입력을 동일한 길이로 패딩한 다음, `attention_mask`를 사용하면 어떤 XLA 문제도 없이 가변 크기에서 가져온 것과 동일한 결과를 가져올 수 있습니다. 그러나 과도한 패딩은 심각한 속도 저하를 야기할 수도 있습니다. 모든 샘플을 전체 데이터 세트의 최대 길이로 패딩하면, 무한한 패딩 토큰으로 구성된 배치가 생성되어 많은 연산과 메모리가 낭비될 수 있습니다!
|
||||
|
||||
이 문제에 대한 완벽한 해결책은 없습니다. 하지만, 몇 가지 트릭을 시도해볼 수 있습니다. 한 가지 유용한 트릭은 **샘플 배치를 32 또는 64 토큰과 같은 숫자의 배수까지 패딩하는 것입니다.** 이는 토큰 수가 소폭 증가하지만, 모든 입력 크기가 32 또는 64의 배수여야 하기 때문에 고유한 입력 크기의 수가 대폭 줄어듭니다. 고유한 입력 크기가 적다는 것은 XLA 컴파일 횟수가 적어진다는 것을 의미합니다!
|
||||
|
||||
<Tip>
|
||||
|
||||
**🤗특수한 HuggingFace 팁🤗:** 토크나이저와 데이터 콜레이터에 도움이 될 수 있는 메소드가 있습니다. 토크나이저를 불러올 때 `padding="max_length"` 또는 `padding="longest"`를 사용하여 패딩된 데이터를 출력하도록 할 수 있습니다. 토크나이저와 데이터 콜레이터는 나타나는 고유한 입력 크기의 수를 줄이기 위해 사용할 수 있는 `pad_to_multiple_of` 인수도 있습니다!
|
||||
|
||||
</Tip>
|
||||
|
||||
### 실제 TPU로 모델을 훈련하려면 어떻게 해야 하나요?[[how-do-i-actually-train-my-model-on-tpu]]
|
||||
|
||||
훈련이 XLA와 호환되고 (TPU 노드/Colab을 사용하는 경우) 데이터 세트가 적절하게 준비되었다면, TPU에서 실행하는 것은 놀랍도록 쉽습니다! 코드에서 몇 줄만 추가하여, TPU를 초기화하고 모델과 데이터 세트가 `TPUStrategy` 범위 내에 생성되도록 변경하면 됩니다. [우리의 TPU 예제 노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)을 참조하여 실제로 작동하는 모습을 확인해 보세요!
|
||||
|
||||
### 요약[[summary]]
|
||||
|
||||
여기에 많은 내용이 포함되어 있으므로, TPU 훈련을 위한 모델을 준비할 때 따를 수 있는 간략한 체크리스트로 요약해 보겠습니다:
|
||||
|
||||
- 코드가 XLA의 세 가지 규칙을 따르는지 확인합니다.
|
||||
- CPU/GPU에서 `jit_compile=True`로 모델을 컴파일하고 XLA로 훈련할 수 있는지 확인합니다.
|
||||
- 데이터 세트를 메모리에 가져오거나 TPU 호환 데이터 세트를 가져오는 방식을 사용합니다([노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) 참조)
|
||||
- 코드를 Colab(accelerator가 “TPU”로 설정됨) 또는 Google Cloud의 TPU VM으로 마이그레이션합니다.
|
||||
- TPU 초기화 코드를 추가합니다([노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) 참조)
|
||||
- `TPUStrategy`를 생성하고 데이터 세트를 가져오는 것과 모델 생성이 `strategy.scope()` 내에 있는지 확인합니다([노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) 참조)
|
||||
- TPU로 이동할 때 `jit_compile=True`를 다시 설정하는 것을 잊지 마세요!
|
||||
- 🙏🙏🙏🥺🥺🥺
|
||||
- model.fit()을 불러옵니다.
|
||||
- 여러분이 해냈습니다!
|
Loading…
Reference in New Issue
Block a user