Add SiglipForImageClassification and CLIPForImageClassification (#28952)

* First draft

* Add CLIPForImageClassification

* Remove scripts

* Fix doctests
This commit is contained in:
NielsRogge 2024-02-14 08:41:31 +01:00 committed by GitHub
parent de6029a059
commit 63ffd56d02
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 380 additions and 5 deletions

View File

@ -172,6 +172,11 @@ The resource should ideally demonstrate something new instead of duplicating an
[[autodoc]] CLIPVisionModel
- forward
## CLIPForImageClassification
[[autodoc]] CLIPForImageClassification
- forward
</pt>
<tf>

View File

@ -140,3 +140,9 @@ If you want to do the pre- and postprocessing yourself, here's how to do that:
[[autodoc]] SiglipVisionModel
- forward
## SiglipForImageClassification
[[autodoc]] SiglipForImageClassification
- forward

View File

@ -34,7 +34,7 @@ The task illustrated in this tutorial is supported by the following model archit
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[BEiT](../model_doc/beit), [BiT](../model_doc/bit), [ConvNeXT](../model_doc/convnext), [ConvNeXTV2](../model_doc/convnextv2), [CvT](../model_doc/cvt), [Data2VecVision](../model_doc/data2vec-vision), [DeiT](../model_doc/deit), [DiNAT](../model_doc/dinat), [DINOv2](../model_doc/dinov2), [EfficientFormer](../model_doc/efficientformer), [EfficientNet](../model_doc/efficientnet), [FocalNet](../model_doc/focalnet), [ImageGPT](../model_doc/imagegpt), [LeViT](../model_doc/levit), [MobileNetV1](../model_doc/mobilenet_v1), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [MobileViTV2](../model_doc/mobilevitv2), [NAT](../model_doc/nat), [Perceiver](../model_doc/perceiver), [PoolFormer](../model_doc/poolformer), [PVT](../model_doc/pvt), [RegNet](../model_doc/regnet), [ResNet](../model_doc/resnet), [SegFormer](../model_doc/segformer), [SwiftFormer](../model_doc/swiftformer), [Swin Transformer](../model_doc/swin), [Swin Transformer V2](../model_doc/swinv2), [VAN](../model_doc/van), [ViT](../model_doc/vit), [ViT Hybrid](../model_doc/vit_hybrid), [ViTMSN](../model_doc/vit_msn)
[BEiT](../model_doc/beit), [BiT](../model_doc/bit), [CLIP](../model_doc/clip), [ConvNeXT](../model_doc/convnext), [ConvNeXTV2](../model_doc/convnextv2), [CvT](../model_doc/cvt), [Data2VecVision](../model_doc/data2vec-vision), [DeiT](../model_doc/deit), [DiNAT](../model_doc/dinat), [DINOv2](../model_doc/dinov2), [EfficientFormer](../model_doc/efficientformer), [EfficientNet](../model_doc/efficientnet), [FocalNet](../model_doc/focalnet), [ImageGPT](../model_doc/imagegpt), [LeViT](../model_doc/levit), [MobileNetV1](../model_doc/mobilenet_v1), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [MobileViTV2](../model_doc/mobilevitv2), [NAT](../model_doc/nat), [Perceiver](../model_doc/perceiver), [PoolFormer](../model_doc/poolformer), [PVT](../model_doc/pvt), [RegNet](../model_doc/regnet), [ResNet](../model_doc/resnet), [SegFormer](../model_doc/segformer), [SigLIP](../model_doc/siglip), [SwiftFormer](../model_doc/swiftformer), [Swin Transformer](../model_doc/swin), [Swin Transformer V2](../model_doc/swinv2), [VAN](../model_doc/van), [ViT](../model_doc/vit), [ViT Hybrid](../model_doc/vit_hybrid), [ViTMSN](../model_doc/vit_msn)
<!--End of the generated tip-->

View File

@ -1762,6 +1762,7 @@ else:
_import_structure["models.clip"].extend(
[
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPForImageClassification",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
@ -3200,6 +3201,7 @@ else:
_import_structure["models.siglip"].extend(
[
"SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"SiglipForImageClassification",
"SiglipModel",
"SiglipPreTrainedModel",
"SiglipTextModel",
@ -6447,6 +6449,7 @@ if TYPE_CHECKING:
)
from .models.clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPForImageClassification,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
@ -7625,6 +7628,7 @@ if TYPE_CHECKING:
)
from .models.siglip import (
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
SiglipForImageClassification,
SiglipModel,
SiglipPreTrainedModel,
SiglipTextModel,

View File

@ -498,6 +498,7 @@ MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
# Model for Image Classification mapping
("beit", "BeitForImageClassification"),
("bit", "BitForImageClassification"),
("clip", "CLIPForImageClassification"),
("convnext", "ConvNextForImageClassification"),
("convnextv2", "ConvNextV2ForImageClassification"),
("cvt", "CvtForImageClassification"),
@ -540,6 +541,7 @@ MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("regnet", "RegNetForImageClassification"),
("resnet", "ResNetForImageClassification"),
("segformer", "SegformerForImageClassification"),
("siglip", "SiglipForImageClassification"),
("swiftformer", "SwiftFormerForImageClassification"),
("swin", "SwinForImageClassification"),
("swinv2", "Swinv2ForImageClassification"),

View File

@ -67,6 +67,7 @@ else:
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
"CLIPForImageClassification",
]
try:
@ -136,6 +137,7 @@ if TYPE_CHECKING:
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPForImageClassification,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,

View File

@ -21,13 +21,15 @@ from typing import Any, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
@ -38,8 +40,14 @@ from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "CLIPConfig"
_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "openai/clip-vit-base-patch32"
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_0"
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openai/clip-vit-base-patch32",
# See all CLIP models at https://huggingface.co/models?filter=clip
@ -1306,3 +1314,105 @@ class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,
)
@add_start_docstrings(
"""
CLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
the patch tokens) e.g. for ImageNet.
""",
CLIP_START_DOCSTRING,
)
class CLIPForImageClassification(CLIPPreTrainedModel):
main_input_name = "pixel_values"
def __init__(self, config: CLIPConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.vision_model = CLIPVisionTransformer(config.vision_config)
# Classifier head
self.classifier = (
nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.vision_model(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# average pool the patch tokens
sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
# apply classifier
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -61,6 +61,7 @@ else:
"SiglipPreTrainedModel",
"SiglipTextModel",
"SiglipVisionModel",
"SiglipForImageClassification",
]
@ -97,6 +98,7 @@ if TYPE_CHECKING:
else:
from .modeling_siglip import (
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
SiglipForImageClassification,
SiglipModel,
SiglipPreTrainedModel,
SiglipTextModel,

View File

@ -24,14 +24,16 @@ import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn.init import _calculate_fan_in_and_fan_out
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
@ -42,8 +44,15 @@ from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionCo
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "SiglipConfig"
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/siglip-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_1"
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/siglip-base-patch16-224",
# See all SigLIP models at https://huggingface.co/models?filter=siglip
@ -1185,3 +1194,105 @@ class SiglipModel(SiglipPreTrainedModel):
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
@add_start_docstrings(
"""
SigLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
the patch tokens) e.g. for ImageNet.
""",
SIGLIP_START_DOCSTRING,
)
class SiglipForImageClassification(SiglipPreTrainedModel):
main_input_name = "pixel_values"
def __init__(self, config: SiglipConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.vision_model = SiglipVisionTransformer(config.vision_config)
# Classifier head
self.classifier = (
nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.vision_model(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# average pool the patch tokens
sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
# apply classifier
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -1901,6 +1901,13 @@ class ClapTextModelWithProjection(metaclass=DummyObject):
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CLIPForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class CLIPModel(metaclass=DummyObject):
_backends = ["torch"]
@ -7583,6 +7590,13 @@ class SEWDPreTrainedModel(metaclass=DummyObject):
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
class SiglipForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class SiglipModel(metaclass=DummyObject):
_backends = ["torch"]

View File

@ -51,6 +51,7 @@ if is_torch_available():
from torch import nn
from transformers import (
CLIPForImageClassification,
CLIPModel,
CLIPTextModel,
CLIPTextModelWithProjection,
@ -744,6 +745,65 @@ class CLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
self.assertIsNotNone(model)
class CLIPForImageClassificationModelTester(CLIPModelTester):
def __init__(self, parent):
super().__init__(parent)
self.batch_size = self.vision_model_tester.batch_size
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
self.hidden_size = self.vision_model_tester.hidden_size
self.seq_length = self.vision_model_tester.seq_length
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class CLIPForImageClassificationModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (CLIPForImageClassification,) if is_torch_available() else ()
pipeline_model_mapping = {"image-classification": CLIPForImageClassification} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = CLIPForImageClassificationModelTester(self)
@unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="CLIP uses the same initialization scheme as the Flax original implementation")
def test_initialization(self):
pass
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"

View File

@ -12,7 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Siglip model. """
""" Testing suite for the PyTorch SigLIP model. """
import inspect
@ -47,7 +47,7 @@ if is_torch_available():
import torch
from torch import nn
from transformers import SiglipModel, SiglipTextModel, SiglipVisionModel
from transformers import SiglipForImageClassification, SiglipModel, SiglipTextModel, SiglipVisionModel
from transformers.models.siglip.modeling_siglip import SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST
@ -584,6 +584,65 @@ class SiglipModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
self.assertIsNotNone(model)
class SiglipForImageClassificationModelTester(SiglipModelTester):
def __init__(self, parent):
super().__init__(parent)
self.batch_size = self.vision_model_tester.batch_size
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
self.hidden_size = self.vision_model_tester.hidden_size
self.seq_length = self.vision_model_tester.seq_length
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class SiglipForImageClassificationModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (SiglipForImageClassification,) if is_torch_available() else ()
pipeline_model_mapping = {"image-classification": SiglipForImageClassification} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = SiglipForImageClassificationModelTester(self)
@unittest.skip(reason="SiglipForImageClassification does not support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="SiglipForImageClassification does not support inputs_embeds")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="SiglipForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Siglip uses the same initialization scheme as the Flax original implementation")
def test_initialization(self):
pass
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"