Remove tokenizers from the doc table (#24963)

This commit is contained in:
Sylvain Gugger 2023-07-21 09:41:36 -04:00 committed by GitHub
parent 0511369a8b
commit 640e1b6c6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 202 additions and 212 deletions

View File

@ -278,205 +278,205 @@ Flax), PyTorch, and/or TensorFlow.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
|:-----------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| ALIGN | ❌ | ❌ | ✅ | ❌ | ❌ |
| AltCLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| Audio Spectrogram Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Autoformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Bark | ❌ | ❌ | ✅ | ❌ | ❌ |
| BART | ✅ | ✅ | ✅ | ✅ | ✅ |
| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ |
| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ |
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
| BioGpt | ✅ | ❌ | ✅ | ❌ | ❌ |
| BiT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
| BLIP | ❌ | ❌ | ✅ | ✅ | ❌ |
| BLIP-2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
| BridgeTower | ❌ | ❌ | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| Chinese-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| CLAP | ❌ | ❌ | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLIPSeg | ❌ | ❌ | ✅ | ❌ | ❌ |
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
| Conditional DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
| ConvNeXTV2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| CPM-Ant | ✅ | ❌ | ✅ | ❌ | ❌ |
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
| CvT | ❌ | ❌ | ✅ | ✅ | ❌ |
| Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Deformable DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DeiT | ❌ | ❌ | ✅ | ✅ | ❌ |
| DETA | ❌ | ❌ | ✅ | ❌ | ❌ |
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DiNAT | ❌ | ❌ | ✅ | ❌ | ❌ |
| DINOv2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| DonutSwin | ❌ | ❌ | ✅ | ❌ | ❌ |
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| EfficientFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
| EfficientNet | ❌ | ❌ | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
| EnCodec | ❌ | ❌ | ✅ | ❌ | ❌ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| ERNIE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ErnieM | ✅ | ❌ | ✅ | ❌ | ❌ |
| ESM | ✅ | ❌ | ✅ | ✅ | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
| Falcon | ❌ | ❌ | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
| FocalNet | ❌ | ❌ | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| GIT | ❌ | ❌ | ✅ | ❌ | ❌ |
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
| GPT NeoX Japanese | ✅ | ❌ | ✅ | ❌ | ❌ |
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
| GPT-Sw3 | ✅ | ✅ | ✅ | ✅ | ✅ |
| GPTBigCode | ❌ | ❌ | ✅ | ❌ | ❌ |
| GPTSAN-japanese | ✅ | ❌ | ✅ | ❌ | ❌ |
| Graphormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| GroupViT | ❌ | ❌ | ✅ | ✅ | ❌ |
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Informer | ❌ | ❌ | ✅ | ❌ | ❌ |
| InstructBLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| Jukebox | ✅ | ❌ | ✅ | ❌ | ❌ |
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ✅ | ✅ | ❌ |
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| LiLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| LLaMA | ✅ | ✅ | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ |
| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ |
| Marian | ✅ | ❌ | ✅ | ✅ | ✅ |
| MarkupLM | ✅ | ✅ | ✅ | ❌ | ❌ |
| Mask2Former | ❌ | ❌ | ✅ | ❌ | ❌ |
| MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| MaskFormerSwin | ❌ | ❌ | ❌ | ❌ | ❌ |
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
| MEGA | ❌ | ❌ | ✅ | ❌ | ❌ |
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MGP-STR | ✅ | ❌ | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| MobileNetV1 | ❌ | ❌ | ✅ | ❌ | ❌ |
| MobileNetV2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| MobileViT | ❌ | ❌ | ✅ | ✅ | ❌ |
| MobileViTV2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| MRA | ❌ | ❌ | ✅ | ❌ | ❌ |
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| MusicGen | ❌ | ❌ | ✅ | ❌ | ❌ |
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
| NAT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ |
| NLLB-MOE | ❌ | ❌ | ✅ | ❌ | ❌ |
| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| OneFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
| OpenLlama | ❌ | ❌ | ✅ | ❌ | ❌ |
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
| PEGASUS-X | ❌ | ❌ | ✅ | ❌ | ❌ |
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
| Pix2Struct | ❌ | ❌ | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ |
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
| REALM | ✅ | ✅ | ✅ | ❌ | ❌ |
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
| RegNet | ❌ | ❌ | ✅ | ✅ | ✅ |
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ResNet | ❌ | ❌ | ✅ | ✅ | ✅ |
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| RoBERTa-PreLayerNorm | ❌ | ❌ | ✅ | ✅ | ✅ |
| RoCBert | ✅ | ❌ | ✅ | ❌ | ❌ |
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
| RWKV | ❌ | ❌ | ✅ | ❌ | ❌ |
| SAM | ❌ | ❌ | ✅ | ✅ | ❌ |
| SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
| Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ |
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
| SpeechT5 | ✅ | ❌ | ✅ | ❌ | ❌ |
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| SwiftFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| Swin2SR | ❌ | ❌ | ✅ | ❌ | ❌ |
| SwitchTransformers | ❌ | ❌ | ✅ | ❌ | ❌ |
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| Table Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
| Time Series Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| TimeSformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| TimmBackbone | ❌ | ❌ | ❌ | ❌ | ❌ |
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ |
| TVLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| UMT5 | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
| UPerNet | ❌ | ❌ | ✅ | ❌ | ❌ |
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
| ViT Hybrid | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
| ViTMSN | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
| Whisper | ✅ | ✅ | ✅ | ✅ | ✅ |
| X-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| X-MOD | ❌ | ❌ | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ | ✅ | ✅ |
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ |
| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ |
| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ |
| Model | PyTorch support | TensorFlow support | Flax Support |
|:-----------------------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅ | ✅ | ✅ |
| ALIGN | ✅ | ❌ | ❌ |
| AltCLIP | ✅ | ❌ | ❌ |
| Audio Spectrogram Transformer | ✅ | ❌ | ❌ |
| Autoformer | ✅ | ❌ | ❌ |
| Bark | ✅ | ❌ | ❌ |
| BART | ✅ | ✅ | ✅ |
| BEiT | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ |
| Bert Generation | ✅ | ❌ | ❌ |
| BigBird | ✅ | ❌ | ✅ |
| BigBird-Pegasus | ✅ | ❌ | ❌ |
| BioGpt | ✅ | ❌ | ❌ |
| BiT | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ |
| BLIP | ✅ | ✅ | ❌ |
| BLIP-2 | ✅ | ❌ | ❌ |
| BLOOM | ✅ | ❌ | ❌ |
| BridgeTower | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ❌ |
| Chinese-CLIP | ✅ | ❌ | ❌ |
| CLAP | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ |
| CLIPSeg | ✅ | ❌ | ❌ |
| CodeGen | ✅ | ❌ | ❌ |
| Conditional DETR | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ❌ |
| ConvNeXT | ✅ | ✅ | ❌ |
| ConvNeXTV2 | ✅ | ❌ | ❌ |
| CPM-Ant | ✅ | ❌ | ❌ |
| CTRL | ✅ | ✅ | ❌ |
| CvT | ✅ | ✅ | ❌ |
| Data2VecAudio | ✅ | ❌ | ❌ |
| Data2VecText | ✅ | ❌ | ❌ |
| Data2VecVision | ✅ | ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ❌ |
| Decision Transformer | ✅ | ❌ | ❌ |
| Deformable DETR | ✅ | ❌ | ❌ |
| DeiT | ✅ | ✅ | ❌ |
| DETA | ✅ | ❌ | ❌ |
| DETR | ✅ | ❌ | ❌ |
| DiNAT | ✅ | ❌ | ❌ |
| DINOv2 | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ |
| DonutSwin | ✅ | ❌ | ❌ |
| DPR | ✅ | ✅ | ❌ |
| DPT | ✅ | ❌ | ❌ |
| EfficientFormer | ✅ | ✅ | ❌ |
| EfficientNet | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ |
| EnCodec | ✅ | ❌ | ❌ |
| Encoder decoder | ✅ | ✅ | ✅ |
| ERNIE | ✅ | ❌ | ❌ |
| ErnieM | ✅ | ❌ | ❌ |
| ESM | ✅ | ✅ | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ❌ |
| Falcon | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ✅ | ❌ |
| FLAVA | ✅ | ❌ | ❌ |
| FNet | ✅ | ❌ | ❌ |
| FocalNet | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ❌ |
| GIT | ✅ | ❌ | ❌ |
| GLPN | ✅ | ❌ | ❌ |
| GPT Neo | ✅ | ❌ | ✅ |
| GPT NeoX | ✅ | ❌ | ❌ |
| GPT NeoX Japanese | ✅ | ❌ | ❌ |
| GPT-J | ✅ | ✅ | ✅ |
| GPT-Sw3 | ✅ | ✅ | ✅ |
| GPTBigCode | ✅ | ❌ | ❌ |
| GPTSAN-japanese | ✅ | ❌ | ❌ |
| Graphormer | ✅ | ❌ | ❌ |
| GroupViT | ✅ | ✅ | ❌ |
| Hubert | ✅ | ✅ | ❌ |
| I-BERT | ✅ | ❌ | ❌ |
| ImageGPT | ✅ | ❌ | ❌ |
| Informer | ✅ | ❌ | ❌ |
| InstructBLIP | ✅ | ❌ | ❌ |
| Jukebox | ✅ | ❌ | ❌ |
| LayoutLM | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ❌ |
| LED | ✅ | ✅ | ❌ |
| LeViT | ✅ | ❌ | ❌ |
| LiLT | ✅ | ❌ | ❌ |
| LLaMA | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ❌ |
| LongT5 | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ❌ |
| M-CTC-T | ✅ | ❌ | ❌ |
| M2M100 | ✅ | ❌ | ❌ |
| Marian | ✅ | ✅ | ✅ |
| MarkupLM | ✅ | ❌ | ❌ |
| Mask2Former | ✅ | ❌ | ❌ |
| MaskFormer | ✅ | ❌ | ❌ |
| MaskFormerSwin | ❌ | ❌ | ❌ |
| mBART | ✅ | ✅ | ✅ |
| MEGA | ✅ | ❌ | ❌ |
| Megatron-BERT | ✅ | ❌ | ❌ |
| MGP-STR | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ❌ |
| MobileNetV1 | ✅ | ❌ | ❌ |
| MobileNetV2 | ✅ | ❌ | ❌ |
| MobileViT | ✅ | ✅ | ❌ |
| MobileViTV2 | ✅ | ❌ | ❌ |
| MPNet | ✅ | ✅ | ❌ |
| MRA | ✅ | ❌ | ❌ |
| MT5 | ✅ | ✅ | ✅ |
| MusicGen | ✅ | ❌ | ❌ |
| MVP | ✅ | ❌ | ❌ |
| NAT | ✅ | ❌ | ❌ |
| Nezha | ✅ | ❌ | ❌ |
| NLLB-MOE | ✅ | ❌ | ❌ |
| Nyströmformer | ✅ | ❌ | ❌ |
| OneFormer | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ |
| OpenLlama | ✅ | ❌ | ❌ |
| OPT | ✅ | ✅ | ✅ |
| OWL-ViT | ✅ | ❌ | ❌ |
| Pegasus | ✅ | ✅ | ✅ |
| PEGASUS-X | ✅ | ❌ | ❌ |
| Perceiver | ✅ | ❌ | ❌ |
| Pix2Struct | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ❌ |
| PoolFormer | ✅ | ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ❌ |
| QDQBert | ✅ | ❌ | ❌ |
| RAG | ✅ | ✅ | ❌ |
| REALM | ✅ | ❌ | ❌ |
| Reformer | ✅ | ❌ | ❌ |
| RegNet | ✅ | ✅ | ✅ |
| RemBERT | ✅ | ✅ | ❌ |
| ResNet | ✅ | ✅ | ✅ |
| RetriBERT | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ |
| RoBERTa-PreLayerNorm | ✅ | ✅ | ✅ |
| RoCBert | ✅ | ❌ | ❌ |
| RoFormer | ✅ | ✅ | ✅ |
| RWKV | ✅ | ❌ | ❌ |
| SAM | ✅ | ✅ | ❌ |
| SegFormer | ✅ | ✅ | ❌ |
| SEW | ✅ | ❌ | ❌ |
| SEW-D | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ✅ | ❌ | ✅ |
| Speech2Text | ✅ | ✅ | ❌ |
| Speech2Text2 | ❌ | ❌ | ❌ |
| SpeechT5 | ✅ | ❌ | ❌ |
| Splinter | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ❌ | ❌ |
| SwiftFormer | ✅ | ❌ | ❌ |
| Swin Transformer | ✅ | ✅ | ❌ |
| Swin Transformer V2 | ✅ | ❌ | ❌ |
| Swin2SR | ✅ | ❌ | ❌ |
| SwitchTransformers | ✅ | ❌ | ❌ |
| T5 | ✅ | ✅ | ✅ |
| Table Transformer | ✅ | ❌ | ❌ |
| TAPAS | ✅ | ✅ | ❌ |
| Time Series Transformer | ✅ | ❌ | ❌ |
| TimeSformer | ✅ | ❌ | ❌ |
| TimmBackbone | ❌ | ❌ | ❌ |
| Trajectory Transformer | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ✅ | ❌ |
| TrOCR | ✅ | ❌ | ❌ |
| TVLT | ✅ | ❌ | ❌ |
| UMT5 | ✅ | ❌ | ❌ |
| UniSpeech | ✅ | ❌ | ❌ |
| UniSpeechSat | ✅ | ❌ | ❌ |
| UPerNet | ✅ | ❌ | ❌ |
| VAN | ✅ | ❌ | ❌ |
| VideoMAE | ✅ | ❌ | ❌ |
| ViLT | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ✅ | ✅ | ✅ |
| VisualBERT | ✅ | ❌ | ❌ |
| ViT | ✅ | ✅ | ✅ |
| ViT Hybrid | ✅ | ❌ | ❌ |
| ViTMAE | ✅ | ✅ | ❌ |
| ViTMSN | ✅ | ❌ | ❌ |
| ViViT | ✅ | ❌ | ❌ |
| Wav2Vec2 | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ✅ | ❌ | ❌ |
| WavLM | ✅ | ❌ | ❌ |
| Whisper | ✅ | ✅ | ✅ |
| X-CLIP | ✅ | ❌ | ❌ |
| X-MOD | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ |
| XLM | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL | ✅ | ❌ | ❌ |
| XLNet | ✅ | ✅ | ❌ |
| YOLOS | ✅ | ❌ | ❌ |
| YOSO | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -93,8 +93,6 @@ def get_model_table_from_auto_modules():
model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
slow_tokenizers = collections.defaultdict(bool)
fast_tokenizers = collections.defaultdict(bool)
pt_models = collections.defaultdict(bool)
tf_models = collections.defaultdict(bool)
flax_models = collections.defaultdict(bool)
@ -102,13 +100,7 @@ def get_model_table_from_auto_modules():
# Let's lookup through all transformers object (once).
for attr_name in dir(transformers_module):
lookup_dict = None
if attr_name.endswith("Tokenizer"):
lookup_dict = slow_tokenizers
attr_name = attr_name[:-9]
elif attr_name.endswith("TokenizerFast"):
lookup_dict = fast_tokenizers
attr_name = attr_name[:-13]
elif _re_tf_models.match(attr_name) is not None:
if _re_tf_models.match(attr_name) is not None:
lookup_dict = tf_models
attr_name = _re_tf_models.match(attr_name).groups()[0]
elif _re_flax_models.match(attr_name) is not None:
@ -129,7 +121,7 @@ def get_model_table_from_auto_modules():
# Let's build that table!
model_names = list(model_name_to_config.keys())
model_names.sort(key=str.lower)
columns = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
columns = ["Model", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
widths = [len(c) + 2 for c in columns]
widths[0] = max([len(name) for name in model_names]) + 2
@ -144,8 +136,6 @@ def get_model_table_from_auto_modules():
prefix = model_name_to_prefix[name]
line = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],