[PEFT] Peft integration alternative design (#25077)

* a draft version

* v2 integration

* fix

* make it more generic and works for IA3

* add set adapter and multiple adapters support

* fixup

* adapt a bit

* oops

* oops

* oops

* adapt more

* fix

* add more refactor

* now works with model class

* change it to instance method as it causes issues with `jit`.

* add CR

* change method name

* add `add_adapter` method

* clean up

* Update src/transformers/adapters/peft_mixin.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add moe utils

* fixup

* Update src/transformers/adapters/peft_mixin.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* adapt

* oops

* fixup

* add is_peft_available

* remove `requires_backend`

* trainer compatibility

* fixup + docstring

* more details

* trigger CI

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

* fixup + is_main_process

* added `save_peft_format` in save_pretrained

* up

* fix nits here and there

* nits here and there.

* docs

* revert `encoding="utf-8"`

* comment

* added slow tests before the PEFT release.

* fixup and nits

* let's be on the safe zone

* added more comments

* v1 docs

* add remaining docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* move to `lib_integrations`

* fixup

* this time fixup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address final comments

* refactor to use `token`

* add PEFT to DockerFile for slow tests.

* added pipeline support.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
This commit is contained in:
Younes Belkada 2023-08-18 19:08:03 +02:00 committed by GitHub
parent ef1534252f
commit faed2ca46f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1110 additions and 9 deletions

View File

@ -44,6 +44,8 @@ RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes

View File

@ -19,6 +19,8 @@
title: Train with a script
- local: accelerate
title: Set up distributed training with 🤗 Accelerate
- local: peft
title: Load and train adapters with 🤗 PEFT
- local: model_sharing
title: Share your model
- local: transformers_agents

216
docs/source/en/peft.md Normal file
View File

@ -0,0 +1,216 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Load adapters with 🤗 PEFT
[[open-in-colab]]
[Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) methods freeze the pretrained model parameters during fine-tuning and add a small number of trainable parameters (the adapters) on top of it. The adapters are trained to learn task-specific information. This approach has been shown to be very memory-efficient with lower compute usage while producing results comparable to a fully fine-tuned model.
Adapters trained with PEFT are also usually an order of magnitude smaller than the full model, making it convenient to share, store, and load them.
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">The adapter weights for a OPTForCausalLM model stored on the Hub are only ~6MB compared to the full size of the model weights, which can be ~700MB.</figcaption>
</div>
If you're interested in learning more about the 🤗 PEFT library, check out the [documentation](https://huggingface.co/docs/peft/index).
## Setup
Get started by installing 🤗 PEFT:
```bash
pip install peft
```
If you want to try out the brand new features, you might be interested in installing the library from source:
```bash
pip install git+https://github.com/huggingface/peft.git
```
## Supported PEFT models
🤗 Transformers natively supports some PEFT methods, meaning you can load adapter weights stored locally or on the Hub and easily run or train them with a few lines of code. The following methods are supported:
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
If you want to use other PEFT methods, such as prompt learning or prompt tuning, or about the 🤗 PEFT library in general, please refer to the [documentation](https://huggingface.co/docs/peft/index).
## Load a PEFT adapter
To load and use a PEFT adapter model from 🤗 Transformers, make sure the Hub repository or local directory contains an `adapter_config.json` file and the adapter weights, as shown in the example image above. Then you can load the PEFT adapter model using the `AutoModelFor` class. For example, to load a PEFT adapter model for causal language modeling:
1. specify the PEFT model id
2. pass it to the [`AutoModelForCausalLM`] class
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
```
<Tip>
You can load a PEFT adapter with either an `AutoModelFor` class or the base model class like `OPTForCausalLM` or `LlamaForCausalLM`.
</Tip>
You can also load a PEFT adapter by calling the `load_adapter` method:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)
```
## Load in 8bit or 4bit
The `bitsandbytes` integration supports 8bit and 4bit precision data types, which are useful for loading large models because it saves memory (see the `bitsandbytes` integration [guide](./quantization#bitsandbytes-integration) to learn more). Add the `load_in_8bit` or `load_in_4bit` parameters to [`~PreTrainedModel.from_pretrained`] and set `device_map="auto"` to effectively distribute the model to your hardware:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)
```
## Add a new adapter
You can use [`~peft.PeftModel.add_adapter`] to add a new adapter to a model with an existing adapter as long as the new adapter is the same type as the current one. For example, if you have an existing LoRA adapter attached to a model:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
init_lora_weights=False
)
model.add_adapter(lora_config, adapter_name="adapter_1")
```
To add a new adapter:
```py
# attach new adapter with same config
model.add_adapter(lora_config, adapter_name="adapter_2")
```
Now you can use [`~peft.PeftModel.set_adapter`] to set which adapter to use:
```py
# use adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
# use adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
```
## Enable and disable adapters
Once you've added an adapter to a model, you can enable or disable the adapter module. To enable the adapter module:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
# to initiate with random weights
peft_config.init_lora_weights = False
model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)
```
To disable the adapter module:
```py
model.disable_adapters()
output = model.generate(**inputs)
```
## Train a PEFT adapter
PEFT adapters are supported by the [`Trainer`] class so that you can train an adapter for your specific use case. It only requires adding a few more lines of code. For example, to train a LoRA adapter:
<Tip>
If you aren't familiar with fine-tuning a model with [`Trainer`], take a look at the [Fine-tune a pretrained model](training) tutorial.
</Tip>
1. Define your adapter configuration with the task type and hyperparameters (see [`~peft.LoraConfig`] for more details about what the hyperparameters do).
```py
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
)
```
2. Add adapter to the model.
```py
model.add_adapter(peft_config)
```
3. Now you can pass the model to [`Trainer`]!
```py
trainer = Trainer(model=model, ...)
trainer.train()
```
To save your trained adapter and load it back:
```py
model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)
```
<!--
TODO: (@younesbelkada @stevhliu)
- Link to PEFT docs for further details
- Trainer
- 8-bit / 4-bit examples ?
-->

View File

@ -111,6 +111,8 @@ _import_structure = {
"is_tensorboard_available",
"is_wandb_available",
],
"lib_integrations": [],
"lib_integrations.peft": [],
"modelcard": ["ModelCard"],
"modeling_tf_pytorch_utils": [
"convert_tf_weight_name_to_pt_weight_name",

View File

@ -0,0 +1,14 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .peft import PeftAdapterMixin

View File

@ -0,0 +1,15 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .peft_mixin import PeftAdapterMixin

View File

@ -0,0 +1,390 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Optional
from ...utils import (
check_peft_version,
find_adapter_config_file,
is_accelerate_available,
is_peft_available,
logging,
)
if is_accelerate_available():
from accelerate import dispatch_model
from accelerate.utils import get_balanced_memory, infer_auto_device_map
logger = logging.get_logger(__name__)
class PeftAdapterMixin:
"""
A class containing all functions for loading and using adapters weights that are supported in PEFT library. For
more details about adapters and injecting them on a transformer-based model, check out the documentation of PEFT
library: https://huggingface.co/docs/peft/index
Currently supported PEFT methods are all non-prefix tuning methods. Below is the list of supported PEFT methods
that anyone can load, train and run with this mixin class:
- Low Rank Adapters (LoRA): https://huggingface.co/docs/peft/conceptual_guides/lora
- IA3: https://huggingface.co/docs/peft/conceptual_guides/ia3
- AdaLora: https://arxiv.org/abs/2303.10512
Other PEFT models such as prompt tuning, prompt learning are out of scope as these adapters are not "injectable"
into a torch module. For using these methods, please refer to the usage guide of PEFT library.
With this mixin, if the correct PEFT version is installed, it is possible to:
- Load an adapter stored on a local path or in a remote Hub repository, and inject it in the model
- Attach new adapters in the model and train them with Trainer or by your own.
- Attach multiple adapters and iteratively activate / deactivate them
- Activate / deactivate all adapters from the model.
- Get the `state_dict` of the active adapter.
"""
_hf_peft_config_loaded = False
def load_adapter(
self,
peft_model_id: str,
adapter_name: Optional[str] = None,
revision: Optional[str] = None,
token: Optional[str] = None,
device_map: Optional[str] = "auto",
max_memory: Optional[str] = None,
offload_folder: Optional[str] = None,
offload_index: Optional[int] = None,
) -> None:
"""
Load adapter weights from file or remote Hub folder. If you are not familiar with adapters and PEFT methods, we
invite you to read more about them on PEFT official documentation: https://huggingface.co/docs/peft
Requires peft as a backend to load the adapter weights.
Args:
peft_model_id (`str`):
The identifier of the model to look for on the Hub, or a local path to the saved adapter config file
and adapter weights.
adapter_name (`str`, *optional*):
The adapter name to use. If not set, will use the default adapter.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
token (`str`, `optional`):
Whether to use authentication token to load the remote folder. Userful to load private repositories
that are on HuggingFace Hub. You might need to call `huggingface-cli login` and paste your tokens to
cache it.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
like `1`) on which the model will be allocated, the device map will map the entire model to this
device. Passing `device_map = 0` means put the whole model on GPU 0.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, `optional`):
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
offload_index (`int`, `optional`):
`offload_index` argument to be passed to `accelerate.dispatch_model` method.
"""
check_peft_version(min_version="0.4.0")
adapter_name = adapter_name if adapter_name is not None else "default"
from peft import PeftConfig, inject_adapter_in_model, load_peft_weights
from peft.utils import set_peft_model_state_dict
if not self._hf_peft_config_loaded:
self._hf_peft_config_loaded = True
elif adapter_name in self.peft_config:
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
adapter_config_file = find_adapter_config_file(
peft_model_id,
revision=revision,
token=token,
)
if adapter_config_file is None:
raise ValueError(
f"adapter model file not found in {peft_model_id}. Make sure you are passing the correct path to the "
"adapter model."
)
loaded_peft_config = PeftConfig.from_pretrained(
peft_model_id,
revision=revision,
use_auth_token=token,
)
# Create and add fresh new adapters into the model.
inject_adapter_in_model(loaded_peft_config, self, adapter_name)
adapter_state_dict = load_peft_weights(peft_model_id, revision=revision, use_auth_token=token)
# We need to pre-process the state dict to remove unneeded prefixes - for backward compatibility
processed_adapter_state_dict = {}
prefix = "base_model.model."
for key, value in adapter_state_dict.items():
if key.startswith(prefix):
new_key = key[len(prefix) :]
else:
new_key = key
processed_adapter_state_dict[new_key] = value
# Load state dict
incompatible_keys = set_peft_model_state_dict(self, processed_adapter_state_dict, adapter_name)
if incompatible_keys is not None:
# check only for unexpected keys
if hasattr(incompatible_keys, "unexpected_keys") and len(incompatible_keys.unexpected_keys) > 0:
logger.warning(
f"Loading adapter weights from {peft_model_id} led to unexpected keys not found in the model: "
f" {incompatible_keys.unexpected_keys}. "
)
# Re-dispatch model and hooks in case the model is offloaded to CPU / Disk.
if (
(getattr(self, "hf_device_map", None) is not None)
and (len(set(self.hf_device_map.values()).intersection({"cpu", "disk"})) > 0)
and len(self.peft_config) == 1
):
self._dispatch_accelerate_model(
device_map=device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_index=offload_index,
)
def add_adapter(self, adapter_config, adapter_name: Optional[str] = None) -> None:
r"""
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
Adds a fresh new adapter to the current model for training purpose. If no adapter name is passed, a default
name is assigned to the adapter to follow the convention of PEFT library (in PEFT we use "default" as the
default adapter name).
Args:
adapter_config (`~peft.PeftConfig`):
The configuration of the adapter to add, supported adapters are non-prefix tuning and adaption prompts
methods
adapter_name (`str`, *optional*, defaults to `"default"`):
The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.
"""
check_peft_version(min_version="0.4.0")
from peft import PeftConfig, inject_adapter_in_model
adapter_name = adapter_name or "default"
if not self._hf_peft_config_loaded:
self._hf_peft_config_loaded = True
elif adapter_name in self.peft_config:
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
if not isinstance(adapter_config, PeftConfig):
raise ValueError(
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
)
inject_adapter_in_model(adapter_config, self, adapter_name)
self.set_adapter(adapter_name)
def set_adapter(self, adapter_name: str) -> None:
"""
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
Sets a specific adapter by forcing the model to use a that adapter and disable the other adapters.
Args:
adapter_name (`str`):
The name of the adapter to set.
"""
check_peft_version(min_version="0.4.0")
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
elif adapter_name not in self.peft_config:
raise ValueError(
f"Adapter with name {adapter_name} not found. Please pass the correct adapter name among {list(self.peft_config.keys())}"
)
from peft.tuners.tuners_utils import BaseTunerLayer
_adapters_has_been_set = False
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
module.active_adapter = adapter_name
_adapters_has_been_set = True
if not _adapters_has_been_set:
raise ValueError(
"Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters."
)
def disable_adapters(self) -> None:
r"""
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
Disable all adapters that are attached to the model. This leads to inferring with the base model only.
"""
check_peft_version(min_version="0.4.0")
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
module.disable_adapters = True
def enable_adapters(self) -> None:
"""
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
Enable adapters that are attached to the model. The model will use `self.active_adapter()`
"""
check_peft_version(min_version="0.4.0")
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
module.disable_adapters = False
def active_adapter(self) -> str:
"""
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
Gets the current active adapter of the model.
"""
check_peft_version(min_version="0.4.0")
if not is_peft_available():
raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
return module.active_adapter
def get_adapter_state_dict(self, adapter_name: Optional[str] = None) -> dict:
"""
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
official documentation: https://huggingface.co/docs/peft
Gets the adapter state dict that should only contain the weights tensors of the specified adapter_name adapter.
If no adapter_name is passed, the active adapter is used.
Args:
adapter_name (`str`, *optional*):
The name of the adapter to get the state dict from. If no name is passed, the active adapter is used.
"""
check_peft_version(min_version="0.4.0")
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft import get_peft_model_state_dict
if adapter_name is None:
adapter_name = self.active_adapter()
adapter_state_dict = get_peft_model_state_dict(self, adapter_name=adapter_name)
return adapter_state_dict
def _dispatch_accelerate_model(
self,
device_map: str,
max_memory: Optional[int] = None,
offload_folder: Optional[str] = None,
offload_index: Optional[int] = None,
) -> None:
"""
Optionnal re-dispatch the model and attach new hooks to the model in case the model has been loaded with
accelerate (i.e. with `device_map=xxx`)
Args:
device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
like `1`) on which the model will be allocated, the device map will map the entire model to this
device. Passing `device_map = 0` means put the whole model on GPU 0.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
offload_index (`int`, *optional*):
The offload_index argument to be passed to `accelerate.dispatch_model` method.
"""
dispatch_model_kwargs = {}
# Safety checker for previous `accelerate` versions
# `offload_index` was introduced in https://github.com/huggingface/accelerate/pull/873/
if "offload_index" in inspect.signature(dispatch_model).parameters:
dispatch_model_kwargs["offload_index"] = offload_index
no_split_module_classes = self._no_split_modules
if device_map != "sequential":
max_memory = get_balanced_memory(
self,
max_memory=max_memory,
no_split_module_classes=no_split_module_classes,
low_zero=(device_map == "balanced_low_0"),
)
if isinstance(device_map, str):
device_map = infer_auto_device_map(
self, max_memory=max_memory, no_split_module_classes=no_split_module_classes
)
dispatch_model(
self,
device_map=device_map,
offload_dir=offload_folder,
**dispatch_model_kwargs,
)

View File

@ -38,6 +38,7 @@ from .configuration_utils import PretrainedConfig
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
from .dynamic_module_utils import custom_object_save
from .generation import GenerationConfig, GenerationMixin
from .lib_integrations import PeftAdapterMixin
from .pytorch_utils import ( # noqa: F401
Conv1D,
apply_chunking_to_forward,
@ -48,6 +49,8 @@ from .pytorch_utils import ( # noqa: F401
prune_linear_layer,
)
from .utils import (
ADAPTER_SAFE_WEIGHTS_NAME,
ADAPTER_WEIGHTS_NAME,
DUMMY_INPUTS,
FLAX_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
@ -68,6 +71,7 @@ from .utils import (
is_bitsandbytes_available,
is_offline_mode,
is_optimum_available,
is_peft_available,
is_remote_url,
is_safetensors_available,
is_torch_tpu_available,
@ -123,6 +127,9 @@ if is_sagemaker_mp_enabled():
else:
IS_SAGEMAKER_MP_POST_1_10 = False
if is_peft_available():
from .utils import find_adapter_config_file
@contextmanager
def no_init_weights(_enable=True):
@ -1039,7 +1046,7 @@ class ModuleUtilsMixin:
return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
r"""
Base class for all models.
@ -1738,6 +1745,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
safe_serialization: bool = False,
variant: Optional[str] = None,
token: Optional[Union[str, bool]] = None,
save_peft_format: bool = True,
**kwargs,
):
"""
@ -1780,6 +1788,10 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
save_peft_format (`bool`, *optional*, defaults to `True`):
For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
disable this behaviours by setting `save_peft_format` to `False`.
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
@ -1847,12 +1859,33 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
if self._auto_class is not None:
custom_object_save(self, save_directory, config=self.config)
_hf_peft_config_loaded = getattr(model_to_save, "_hf_peft_config_loaded", False)
# Save the config
if is_main_process:
model_to_save.config.save_pretrained(save_directory)
if not _hf_peft_config_loaded:
model_to_save.config.save_pretrained(save_directory)
if self.can_generate():
model_to_save.generation_config.save_pretrained(save_directory)
if _hf_peft_config_loaded:
logger.info(
"Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
)
state_dict = model_to_save.get_adapter_state_dict()
if save_peft_format:
logger.info(
"To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
)
peft_state_dict = {}
for key, value in state_dict.items():
peft_state_dict[f"base_model.model.{key}"] = value
state_dict = peft_state_dict
current_peft_config = self.peft_config[self.active_adapter()]
current_peft_config.save_pretrained(save_directory)
# Save the model
if state_dict is None:
state_dict = model_to_save.state_dict()
@ -1907,8 +1940,11 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
)
# Shard the model if it is too big.
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
weights_name = _add_variant(weights_name, variant)
if not _hf_peft_config_loaded:
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
weights_name = _add_variant(weights_name, variant)
else:
weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
@ -2295,6 +2331,8 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
subfolder = kwargs.pop("subfolder", "")
commit_hash = kwargs.pop("_commit_hash", None)
variant = kwargs.pop("variant", None)
_adapter_model_path = kwargs.pop("_adapter_model_path", None)
adapter_name = kwargs.pop("adapter_name", "default")
if is_fsdp_enabled():
low_cpu_mem_usage = True
@ -2323,6 +2361,29 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
" ignored."
)
if is_peft_available() and _adapter_model_path is None:
maybe_adapter_model_path = find_adapter_config_file(
pretrained_model_name_or_path,
revision=revision,
subfolder=subfolder,
token=token,
commit_hash=commit_hash,
)
elif is_peft_available() and _adapter_model_path is not None:
maybe_adapter_model_path = _adapter_model_path
else:
maybe_adapter_model_path = None
has_adapter_config = maybe_adapter_model_path is not None
if has_adapter_config:
if _adapter_model_path is not None:
adapter_model_id = _adapter_model_path
else:
with open(maybe_adapter_model_path, "r", encoding="utf-8") as f:
adapter_model_id = pretrained_model_name_or_path
pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
# change device_map into a map if we passed an int, a str or a torch.device
if isinstance(device_map, torch.device):
device_map = {"": device_map}
@ -3153,6 +3214,14 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
if quantization_method_from_config == QuantizationMethod.GPTQ:
model = quantizer.post_init_model(model)
if has_adapter_config:
model.load_adapter(
adapter_model_id,
adapter_name=adapter_name,
revision=revision,
token=token,
)
if output_loading_info:
if loading_info is None:
loading_info = {

View File

@ -15,13 +15,14 @@
"""Factory function to build auto-model classes."""
import copy
import importlib
import json
import os
import warnings
from collections import OrderedDict
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...utils import copy_func, logging, requires_backends
from ...utils import copy_func, find_adapter_config_file, is_peft_available, logging, requires_backends
from .configuration_auto import AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings
@ -469,6 +470,24 @@ class _BaseAutoModelClass:
if token is not None:
hub_kwargs["token"] = token
if is_peft_available():
revision = kwargs.get("revision", None)
subfolder = kwargs.get("subfolder", None)
maybe_adapter_path = find_adapter_config_file(
pretrained_model_name_or_path,
revision=revision,
token=use_auth_token,
subfolder=subfolder,
)
if maybe_adapter_path is not None:
with open(maybe_adapter_path, "r", encoding="utf-8") as f:
adapter_config = json.load(f)
kwargs["_adapter_model_path"] = pretrained_model_name_or_path
pretrained_model_name_or_path = adapter_config["base_model_name_or_path"]
if not isinstance(config, PretrainedConfig):
kwargs_orig = copy.deepcopy(kwargs)
# ensure not to pollute the config object with torch_dtype="auto" - since it's

View File

@ -34,8 +34,10 @@ from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
from ..tokenization_utils import PreTrainedTokenizer
from ..utils import (
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
find_adapter_config_file,
is_kenlm_available,
is_offline_mode,
is_peft_available,
is_pyctcdecode_available,
is_tf_available,
is_torch_available,
@ -721,6 +723,21 @@ def pipeline(
config = AutoConfig.from_pretrained(config, _from_pipeline=task, **hub_kwargs, **model_kwargs)
hub_kwargs["_commit_hash"] = config._commit_hash
elif config is None and isinstance(model, str):
# Check for an adapter file in the model path if PEFT is available
if is_peft_available():
subfolder = hub_kwargs.get("subfolder", None)
maybe_adapter_path = find_adapter_config_file(
model,
revision=revision,
token=use_auth_token,
subfolder=subfolder,
)
if maybe_adapter_path is not None:
with open(maybe_adapter_path, "r", encoding="utf-8") as f:
adapter_config = json.load(f)
model = adapter_config["base_model_name_or_path"]
config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs)
hub_kwargs["_commit_hash"] = config._commit_hash

View File

@ -69,6 +69,7 @@ from .utils import (
is_onnx_available,
is_optimum_available,
is_pandas_available,
is_peft_available,
is_phonemizer_available,
is_pyctcdecode_available,
is_pytesseract_available,
@ -369,6 +370,16 @@ def require_torch(test_case):
return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case)
def require_peft(test_case):
"""
Decorator marking a test that requires PEFT.
These tests are skipped when PEFT isn't installed.
"""
return unittest.skipUnless(is_peft_available(), "test requires PEFT")(test_case)
def require_torchvision(test_case):
"""
Decorator marking a test that requires Torchvision.

View File

@ -396,7 +396,7 @@ class Trainer:
)
# At this stage the model is already loaded
if getattr(model, "is_quantized", False):
if getattr(model, "is_quantized", False) and not getattr(model, "_hf_peft_config_loaded", False):
if getattr(model, "_is_quantized_training_enabled", False):
logger.info(
"The model is quantized. To train this model you need to add additional modules"

View File

@ -179,13 +179,17 @@ from .import_utils import (
requires_backends,
torch_only_method,
)
from .peft_utils import (
ADAPTER_CONFIG_NAME,
ADAPTER_SAFE_WEIGHTS_NAME,
ADAPTER_WEIGHTS_NAME,
check_peft_version,
find_adapter_config_file,
)
WEIGHTS_NAME = "pytorch_model.bin"
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
ADAPTER_CONFIG_NAME = "adapter_config.json"
ADAPTER_WEIGHTS_NAME = "adapter_model.bin"
ADAPTER_SAFE_WEIGHTS_NAME = "adapter_model.safetensors"
TF2_WEIGHTS_NAME = "tf_model.h5"
TF2_WEIGHTS_INDEX_NAME = "tf_model.h5.index.json"
TF_WEIGHTS_NAME = "model.ckpt"

View File

@ -1001,6 +1001,11 @@ JIEBA_IMPORT_ERROR = """
jieba`. Please note that you may need to restart your runtime after installation.
"""
PEFT_IMPORT_ERROR = """
{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
peft`. Please note that you may need to restart your runtime after installation.
"""
BACKENDS_MAPPING = OrderedDict(
[
("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
@ -1034,6 +1039,7 @@ BACKENDS_MAPPING = OrderedDict(
("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
]
)

View File

@ -0,0 +1,98 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
from typing import Optional
from packaging import version
from .hub import cached_file
from .import_utils import is_peft_available
ADAPTER_CONFIG_NAME = "adapter_config.json"
ADAPTER_WEIGHTS_NAME = "adapter_model.bin"
ADAPTER_SAFE_WEIGHTS_NAME = "adapter_model.safetensors"
def find_adapter_config_file(
model_id: str,
revision: str = None,
subfolder: str = None,
token: Optional[str] = None,
commit_hash: Optional[str] = None,
) -> Optional[str]:
r"""
Simply checks if the model stored on the Hub or locally is an adapter model or not, return the path the the adapter
config file if it is, None otherwise.
Args:
model_id (`str`):
The identifier of the model to look for, can be either a local path or an id to the repository on the Hub.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
token (`str`, `optional`):
Whether to use authentication token to load the remote folder. Userful to load private repositories that
are on HuggingFace Hub. You might need to call `huggingface-cli login` and paste your tokens to cache it.
"""
adapter_cached_filename = None
if os.path.isdir(model_id):
list_remote_files = os.listdir(model_id)
if ADAPTER_CONFIG_NAME in list_remote_files:
adapter_cached_filename = os.path.join(model_id, ADAPTER_CONFIG_NAME)
else:
adapter_cached_filename = cached_file(
model_id,
ADAPTER_CONFIG_NAME,
revision=revision,
token=token,
_commit_hash=commit_hash,
subfolder=subfolder,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
return adapter_cached_filename
def check_peft_version(min_version: str) -> None:
r"""
Checks if the version of PEFT is compatible.
Args:
version (`str`):
The version of PEFT to check against.
"""
if not is_peft_available():
raise ValueError("PEFT is not installed. Please install it with `pip install peft`")
is_peft_version_compatible = version.parse(importlib.metadata.version("peft")) <= version.parse(min_version)
if not is_peft_version_compatible:
raise ValueError(
f"The version of PEFT you are using is not compatible, please use a version that is greater"
f" than {min_version}"
)

View File

@ -0,0 +1,236 @@
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
from transformers import AutoModelForCausalLM, OPTForCausalLM
from transformers.testing_utils import require_peft, require_torch, require_torch_gpu, slow, torch_device
from transformers.utils import is_torch_available
if is_torch_available():
import torch
@require_peft
@require_torch
class PeftTesterMixin:
peft_test_model_ids = ("peft-internal-testing/tiny-OPTForCausalLM-lora",)
transformers_test_model_ids = ("hf-internal-testing/tiny-random-OPTForCausalLM",)
transformers_test_model_classes = (AutoModelForCausalLM, OPTForCausalLM)
# TODO: run it with CI after PEFT release.
@slow
class PeftIntegrationTester(unittest.TestCase, PeftTesterMixin):
"""
A testing suite that makes sure that the PeftModel class is correctly integrated into the transformers library.
"""
def _check_lora_correctly_converted(self, model):
"""
Utility method to check if the model has correctly adapters injected on it.
"""
from peft.tuners.tuners_utils import BaseTunerLayer
is_peft_loaded = False
for _, m in model.named_modules():
if isinstance(m, BaseTunerLayer):
is_peft_loaded = True
break
return is_peft_loaded
def test_peft_from_pretrained(self):
"""
Simple test that tests the basic usage of PEFT model through `from_pretrained`.
This checks if we pass a remote folder that contains an adapter config and adapter weights, it
should correctly load a model that has adapters injected on it.
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
self.assertTrue(self._check_lora_correctly_converted(peft_model))
self.assertTrue(peft_model._hf_peft_config_loaded)
# dummy generation
_ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
def test_peft_state_dict(self):
"""
Simple test that checks if the returned state dict of `get_adapter_state_dict()` method contains
the expected keys.
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
state_dict = peft_model.get_adapter_state_dict()
for key in state_dict.keys():
self.assertTrue("lora" in key)
def test_peft_save_pretrained(self):
"""
Test that checks various combinations of `save_pretrained` with a model that has adapters loaded
on it. This checks if the saved model contains the expected files (adapter weights and adapter config).
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
peft_model.save_pretrained(tmpdirname)
self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
self.assertTrue("config.json" not in os.listdir(tmpdirname))
self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
self.assertTrue(self._check_lora_correctly_converted(peft_model))
peft_model.save_pretrained(tmpdirname, safe_serialization=True)
self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
self.assertTrue(self._check_lora_correctly_converted(peft_model))
def test_peft_enable_disable_adapters(self):
"""
A test that checks if `enable_adapters` and `disable_adapters` methods work as expected.
"""
from peft import LoraConfig
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig(init_lora_weights=False)
peft_model.add_adapter(peft_config)
peft_logits = peft_model(dummy_input).logits
peft_model.disable_adapters()
peft_logits_disabled = peft_model(dummy_input).logits
peft_model.enable_adapters()
peft_logits_enabled = peft_model(dummy_input).logits
self.assertTrue(torch.allclose(peft_logits, peft_logits_enabled, atol=1e-12, rtol=1e-12))
self.assertFalse(torch.allclose(peft_logits_enabled, peft_logits_disabled, atol=1e-12, rtol=1e-12))
def test_peft_add_adapter(self):
"""
Simple test that tests if `add_adapter` works as expected
"""
from peft import LoraConfig
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
model = transformers_class.from_pretrained(model_id).to(torch_device)
peft_config = LoraConfig(init_lora_weights=False)
model.add_adapter(peft_config)
self.assertTrue(self._check_lora_correctly_converted(model))
# dummy generation
_ = model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
def test_peft_add_multi_adapter(self):
"""
Simple test that tests the basic usage of PEFT model through `from_pretrained`. This test tests if
add_adapter works as expected in multi-adapter setting.
"""
from peft import LoraConfig
from peft.tuners.tuners_utils import BaseTunerLayer
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
for model_id in self.transformers_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
is_peft_loaded = False
model = transformers_class.from_pretrained(model_id).to(torch_device)
logits_original_model = model(dummy_input).logits
peft_config = LoraConfig(init_lora_weights=False)
model.add_adapter(peft_config)
logits_adapter_1 = model(dummy_input)
model.add_adapter(peft_config, adapter_name="adapter-2")
logits_adapter_2 = model(dummy_input)
for _, m in model.named_modules():
if isinstance(m, BaseTunerLayer):
is_peft_loaded = True
break
self.assertTrue(is_peft_loaded)
# dummy generation
_ = model.generate(input_ids=dummy_input)
model.set_adapter("default")
self.assertTrue(model.active_adapter() == "default")
model.set_adapter("adapter-2")
self.assertTrue(model.active_adapter() == "adapter-2")
# Logits comparison
self.assertFalse(
torch.allclose(logits_adapter_1.logits, logits_adapter_2.logits, atol=1e-6, rtol=1e-6)
)
self.assertFalse(torch.allclose(logits_original_model, logits_adapter_2.logits, atol=1e-6, rtol=1e-6))
@require_torch_gpu
def test_peft_from_pretrained_kwargs(self):
"""
Simple test that tests the basic usage of PEFT model through `from_pretrained` + additional kwargs
and see if the integraiton behaves as expected.
"""
for model_id in self.peft_test_model_ids:
for transformers_class in self.transformers_test_model_classes:
peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
module = peft_model.model.decoder.layers[0].self_attn.v_proj
self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
self.assertTrue(peft_model.hf_device_map is not None)
# dummy generation
_ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
def test_peft_pipeline(self):
"""
Simple test that tests the basic usage of PEFT model + pipeline
"""
from transformers import pipeline
for model_id in self.peft_test_model_ids:
pipe = pipeline("text-generation", model_id)
_ = pipe("Hello")