* [WIP] Add FLAVA model
This PR aims to add [FLAVA](ihttps://arxiv.org/abs/2112.04482) model to the transformers repo.
Following checklist delineates the list of things to be done for this PR
to be complete:
[x] Flava init
[x] Flava base models
[x] Flava layers
[x] Flava Configs
[x] Flava encoders
[x] Flava pretraining models
[ ] Flava classification/retrieval models (To be added in a separate PR)
[x] Documentation updates
[x] Imports updates
[x] Argstring updates
[x] Flava pretrained checkpoints
[x] Flava tests
[x] Flava processors
[x] Sanity check
[x] Lint
* add seed worker and set_deterministic_seed_for_cuda function to enforce reproducability
* change function name to enable determinism, add docstrings, reproducability support for tf
* change function name to enable_determinism_for_distributed_training
* revert changes in set_seed and call set_seed within enable_full_determinism
* add one position argument for seed_worker function
* add full_determinism flag in training args and call enable_full_determinism when it is true
* add enable_full_determinism to documentation
* apply make fixup after the last commit
* Update src/transformers/training_args.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* PyTorch FSDP integration in Trainer
* reformatting
make style and make quality are now compliant.
* Updating dependency check
* Trigger CI
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* Added spanish translation of autoclass_tutorial.
Added 'local' and 'title' fields for autoclass_tutorial.
* Fixed autoclass_tutorial title in _toctree.yml and autoclass_tutorial.mdx
* First draft
* Add YolosForObjectDetection
* Make forward pass work
* Add mid position embeddings
* Add interpolation of position encodings
* Add expected values
* Add YOLOS to tests
* Add integration test
* Support tiny model as well
* Support all models in conversion script
* Remove mid_pe_size attribute
* Make more tests pass
* Add model to README and fix config
* Add copied from statements
* Rename base_model_prefix to vit
* Add missing YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP
* Apply suggestions from code review
* Apply more suggestions from code review
* Convert remaining checkpoints
* Improve docstrings
* Add YolosFeatureExtractor
* Add feature extractor to docs
* Add corresponding tests
* Fix style
* Fix docs
* Apply suggestion from code review
* Fix bad rebase
* Fix some more bad rebase
* Fix missing character
* Improve docs and variable names
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Adding support for `array` key in raw dictionnaries in ASR pipeline.
* ES .
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Making it work by not popping `array` first.
* Black 22.3
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add TapexTokenizer
* Improve docstrings and provide option to provide answer
* Remove option for pretokenized inputs
* Add TAPEX to README
* Fix copies
* Remove option for pretokenized inputs
* Initial commit: add tapex fine-tuning examples on both table-based question answering and table-based fact verification.
* - Draft a README file for running the script and introducing some background.
- Remove unused code lines in tabfact script.
- Disable the deafult `pad_to_max_length` option which is memory-consuming.
* * Support `as_target_tokenizer` function for TapexTokenizer.
* Fix the do_lower_case behaviour of TapexTokenizer.
* Add unit tests for target scenarios and cased/uncased scenarios for both source and target.
* * Replace the label BartTokenizer with TapexTokenizer's as_target_tokenizer function.
* Fix typos in tapex example README.
* * fix the evaluation script - remove the property `task_name`
* * Make the label space more clear for tabfact tasks
* * Using a new fine-tuning script for tapex-base on tabfact.
* * Remove the lowercase code outside the tokenizer - we use the tokenizer to control whether do_lower_case
* Guarantee the hyper-parameter can be run without out-of-memory on 16GB card and report the new reproduced number on wikisql
* * Remove the default tokenizer_name option.
* Provide evaluation command.
* * Support for WikiTableQuestion dataset.
* Fix a typo in README.
* * Fix the datasets's key name in WikiTableQuestions
* Run make fixup and move test to folder
* Fix quality
* Apply suggestions from code review
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Apply suggestions from code review
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply some more suggestions from code review
* Improve docstrings
* Overwrite failing test
* Improve comment in example scripts
* Fix rebase
* Add TAPEX to Auto mapping
* Add TAPEX to auto config mappings
* Put TAPEX higher than BART in auto mapping
* Add TAPEX to doc tests
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: SivilTaram <qianlxc@outlook.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* 📝 add image/vision classification and asr
* 🖍 minor formatting fixes
* Fixed a typo in legacy seq2seq_trainer.py (#16531)
* Add ONNX export for BeiT (#16498)
* Add beit onnx conversion support
* Updated docs
* Added cross reference to ViT ONNX config
* call on_train_end when trial is pruned (#16536)
* Type hints added (#16529)
* Fix Bart type hints (#16297)
* Add type hints to PLBart PyTorch
* Remove pending merge conflicts
* Fix PLBart Type Hints
* Add changes from review
* Add VisualBert type hints (#16544)
* Adding missing type hints for mBART model (PyTorch) (#16429)
* added type hints for mbart tensorflow tf implementation
* Adding missing type hints for mBART model
Tensorflow Implementation model added with missing type hints
* Missing Type hints - correction
For TF model
* Code fixup using make quality tests
* Hint types - typo error
* make fix-copies and make fixup
* type hints
* updated files
* type hints update
* making dependent modesls coherent
Co-authored-by: matt <rocketknight1@gmail.com>
* Remove MBart subclass of XLMRoberta in tokenzier docs (#16546)
* Remove MBart subclass of XLMRoberta in tokenzier
* Fix style
* Copy docs from MBart50 tokenizer
* Use random_attention_mask for TF tests (#16517)
* use random_attention_mask for TF tests
* Fix for TFCLIP test (for now).
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Improve code example (#16450)
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
* Pin tokenizers version <0.13 (#16539)
* Pin tokenizers version <0.13
* Style
* Add code samples for TF speech models (#16494)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* [FlaxSpeechEncoderDecoder] Fix dtype bug (#16581)
* [FlaxSpeechEncoderDecoder] Fix dtype bug
* more fixes
* Making the impossible to connect error actually report the right URL. (#16446)
* Fix flax import in __init__.py: modeling_xglm -> modeling_flax_xglm (#16556)
* Add utility to find model labels (#16526)
* Add utility to find model labels
* Use it in the Trainer
* Update src/transformers/utils/generic.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Quality
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Enable doc in Spanish (#16518)
* Reorganize doc for multilingual support
* Fix style
* Style
* Toc trees
* Adapt templates
* Add use_auth to load_datasets for private datasets to PT and TF examples (#16521)
* fix formatting and remove use_auth
* Add use_auth_token to Flax examples
* add a test checking the format of `convert_tokens_to_string`'s output (#16540)
* add new tests
* add comment to overridden tests
* TF: Finalize `unpack_inputs`-related changes (#16499)
* Add unpack_inputs to remaining models
* removed kwargs to `call()` in TF models
* fix TF T5 tests
* [SpeechEncoderDecoderModel] Correct Encoder Last Hidden State Output (#16586)
* initialize the default rank set on TrainerState (#16530)
* initialize the default rank set on TrainerState
* fix style
* Trigger doc build
* Fix CI: test_inference_for_pretraining in ViTMAEModelTest (#16591)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* add a template to add missing tokenization test (#16553)
* add a template to add missing tokenization test
* add cookiecutter setting
* improve doc
* Update templates/adding_a_missing_tokenization_test/README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* made _load_pretrained_model_low_mem static + bug fix (#16548)
* handle torch_dtype in low cpu mem usage (#16580)
* [Doctests] Correct filenaming (#16599)
* [Doctests] Correct filenaming
* improve quicktour
* make style
* Adding new train_step logic to make things less confusing for users (#15994)
* Adding new train_step logic to make things less confusing for users
* DO NOT ASK WHY WE NEED THAT SUBCLASS
* Metrics now working, at least for single-output models with type annotations!
* Updates and TODOs for the new train_step
* Make fixup
* Temporary test workaround until T5 has types
* Temporary test workaround until T5 has types
* I think this actually works! Needs a lot of tests though
* MAke style/quality
* Revert changes to T5 tests
* Deleting the aforementioned unmentionable subclass
* Deleting the aforementioned unmentionable subclass
* Adding a Keras API test
* Style fixes
* Removing unneeded TODO and comments
* Update test_step too
* Stop trying to compute metrics with the dummy_loss, patch up test
* Make style
* make fixup
* Docstring cleanup
* make fixup
* make fixup
* Stop expanding 1D input tensors when using dummy loss
* Adjust T5 test given the new compile()
* make fixup
* Skipping test for convnext
* Removing old T5-specific Keras test now that we have a common one
* make fixup
* make fixup
* Only skip convnext test on CPU
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_tf_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Avoiding TF import issues
* make fixup
* Update compile() to support TF 2.3
* Skipping model.fit() on template classes for now
* Skipping model.fit() on template class tests for now
* Replace ad-hoc solution with find_labels
* make fixup
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Adding missing type hints for BigBird model (#16555)
* added type hints for mbart tensorflow tf implementation
* Adding missing type hints for mBART model
Tensorflow Implementation model added with missing type hints
* Missing Type hints - correction
For TF model
* Code fixup using make quality tests
* Hint types - typo error
* make fix-copies and make fixup
* type hints
* updated files
* type hints update
* making dependent modesls coherent
* Type hints for BigBird
* removing typos
Co-authored-by: matt <rocketknight1@gmail.com>
* [deepspeed] fix typo, adjust config name (#16597)
* 🖍 apply feedback
Co-authored-by: Cathy <815244047@qq.com>
Co-authored-by: Jim Rohrer <jrohrer1@gmail.com>
Co-authored-by: Ferdinand Schlatt <fschlatt@gmail.com>
Co-authored-by: Dahlbomii <101373053+Dahlbomii@users.noreply.github.com>
Co-authored-by: Gunjan Chhablani <chhablani.gunjan@gmail.com>
Co-authored-by: Rishav Chandra Varma <rishavchandra.v16@iiits.in>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Daniel Stancl <46073029+stancld@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Andres Codas <andrescodas@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* first proposal
* replace model outputs in various models
* conflicts
* docstring
* update poolformer
* minor change in docstring
* CI
* removed poolformer specific outputs from doc
* removed convnext specific outputs from doc
* CI
* weird char in segformer
* conversations
* reverted docstring for BaseModelOutputWithPooling
* update outputs
* changed docstring in BaseModelOutput
* updated docstring in modeling outputs
* typos :)
* fixed typo after copy & paste it all around
* CI
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* segformer
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* ported TFViTMAEIntermediate and TFViTMAEOutput.
* added TFViTMAEModel and TFViTMAEDecoder.
* feat: added a noise argument in the implementation for reproducibility.
* feat: vit mae models with an additional noise argument for reproducibility.
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* fix confusing PIL instructions
As stated in the documentation
[here](https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html?highlight=pdf#write-only-formats),
PIL can only write PDF's, not read them. Remove references to reading
PDF's via PIL from this page to avoid confusion.
* mention PDF in doc examples using PIL
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Be explicit: PDFs must be converted to images
* fix formatting
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Created the Decision Transformer Modle
* updating tests, copy to other machine
* Added last hidden size to Decision Transformer modelling outputs
* Removed copy of original DT file
* made a temporary change to gpt2 to have it conform with the Decision Transformer version
* Updated tests
* Ignoring a file used to test the DT model
* added comments to config file
* added comments and argument descriptions to decision transformer file
* Updated doc
* Ran "make style"
* Remove old model imports
* Removed unused imports, cleaned up init file
* Update docs/source/model_doc/decision_transformer.mdx
added my username
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Reverted changes made to gpt2
* Removed datasets submodule
* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states
* Added support for return of hidden states, attentions and return dict of gpt2 model.
* Updated tests to include many of the ModelTesterMixin tests.
The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes
* Added missing line to the end of gpt2 file
* Added an integration test for the Decision Transformer
Test performs and autoregressive evaluation for two time steps
* Set done and info to _ to fix failing test
* Updated integration test to be deterministic and check expected outputs
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unnecessary config options
* Cleaned up commented code and old comments.
* Cleaned up commented code.
* Changed DecisionTransformer to Decision Transformer
* Added Decision Transformer to the main README file
* Added copy of GTP2 called DecisionTranformerGPT2Model
* isorted imports
* isorted imports
* Added model to non-English README files
* Ran make fix-copies and corrected some cases.
* Updated index file to include Decision Transformer
* Added gpt2 model as copy inside the Decision Transformer model file
* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS
* Deleted redundant checkpoint files (I don't know how these got committed)
* Removed testing files. (These should have never been committed)
* Removed accidentally committed files
* Moved the Decision Transformer test to its own directory
* Add type hints for Pegasus (#16324)
* Funnel type hints (#16323)
* add pt funnel type hints
* add tf funnel type hints
* Add type hints for ProphetNet PyTorch (#16272)
* [GLPN] Improve docs (#16331)
* Add link to notebook
* Add link
* Fix bug
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Added type hints for Pytorch Marian calls (#16200)
* Added type hinting for forward functions in pytorch marian
* typo correction
* Removed type hints on functions from BART per Suraj Patil request
* fix import pb
* fix typo
* corrected tuple call
* ran black
* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List
* Fixing copies to roformer and pegasus
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
* Moved DecisionTransformOutput to modeling_decision_transformer
* Moved the example usage to research project and cleaned comments
* Made tests ignore the copy of gpt2 in Decision Transformer
* Added module output to modelling decision transformer
* removed copied gpt2 model from list of transformers models
* Updated tests and created __init__ file for new test location
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unneeded summary type from config file
* Fixed copies
* Updated pretrained config map to refer to hopper-medium checkpoint
* done (#16340)
* Added Decision transformer to model docs
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add type annotations for Rembert/Splinter and copies (#16338)
* undo black autoformat
* minor fix to rembert forward with default
* make fix-copies, make quality
* Adding types to template model
* Removing List from the template types
* Remove `Optional` from a couple of types that don't accept `None`
Co-authored-by: matt <rocketknight1@gmail.com>
* [Bug template] Shift responsibilities for long-range (#16344)
* Fix code repetition in serialization guide (#16346)
* Adopt framework-specific blocks for content (#16342)
* ✨ refactor code samples with framework-specific blocks
* ✨ update training.mdx
* 🖍 apply feedback
* Updates the default branch from master to main (#16326)
* Updates the default branch from master to main
* Links from `master` to `main`
* Typo
* Update examples/flax/README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updated model with custom docstring example
* Created the Decision Transformer Modle
* updating tests, copy to other machine
* Added last hidden size to Decision Transformer modelling outputs
* Removed copy of original DT file
* made a temporary change to gpt2 to have it conform with the Decision Transformer version
* Updated tests
* Ignoring a file used to test the DT model
* added comments to config file
* added comments and argument descriptions to decision transformer file
* Updated doc
* Ran "make style"
* Remove old model imports
* Removed unused imports, cleaned up init file
* Update docs/source/model_doc/decision_transformer.mdx
added my username
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Reverted changes made to gpt2
* Removed datasets submodule
* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states
* Added support for return of hidden states, attentions and return dict of gpt2 model.
* Updated tests to include many of the ModelTesterMixin tests.
The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes
* Added missing line to the end of gpt2 file
* Added an integration test for the Decision Transformer
Test performs and autoregressive evaluation for two time steps
* Set done and info to _ to fix failing test
* Updated integration test to be deterministic and check expected outputs
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unnecessary config options
* Cleaned up commented code and old comments.
* Cleaned up commented code.
* Changed DecisionTransformer to Decision Transformer
* Added Decision Transformer to the main README file
* Added copy of GTP2 called DecisionTranformerGPT2Model
* isorted imports
* isorted imports
* Added model to non-English README files
* Ran make fix-copies and corrected some cases.
* Updated index file to include Decision Transformer
* Added gpt2 model as copy inside the Decision Transformer model file
* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS
* Deleted redundant checkpoint files (I don't know how these got committed)
* Removed testing files. (These should have never been committed)
* Removed accidentally committed files
* Moved the Decision Transformer test to its own directory
* Moved DecisionTransformOutput to modeling_decision_transformer
* Moved the example usage to research project and cleaned comments
* Made tests ignore the copy of gpt2 in Decision Transformer
* Added module output to modelling decision transformer
* removed copied gpt2 model from list of transformers models
* Updated tests and created __init__ file for new test location
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Removed unneeded summary type from config file
* Fixed copies
* Updated pretrained config map to refer to hopper-medium checkpoint
* Added Decision transformer to model docs
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updated model with custom docstring example
* Updated copies, config auto, and readme files.
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Tegzes <48134725+Tegzes@users.noreply.github.com>
Co-authored-by: Adam Montgomerie <adam@avanssion.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Clémentine Fourrier <22726840+clefourrier@users.noreply.github.com>
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Jacob Dineen <54680234+jacobdineen@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
* Updates the default branch from master to main
* Links from `master` to `main`
* Typo
* Update examples/flax/README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add Flaubert to ONNX to make it available for conversion.
* Fixed features for FlauBERT. fixup command remove flaubert to docs list.
Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
* Remove unused attributes
* Add link to blog and add clarification about input size
* Improve readability of the code
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Update training.mdx
Fixed Error Raised Due to Wrongly Accessing Training Sample
* Ran make style
* Revert to Old Commit
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Draft a guide with our code quirks for new models
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* up
* up
* up
* fix
* yeh
* ups
* Empty test commit
* correct quicktour
* correct
* correct
* up
* up
* uP
* uP
* up
* up
* uP
* up
* up
* up
* up
* up
* up
* up
* up
* up
* up
* Update src/transformers/models/van/modeling_van.py
* finish
* apply suggestions
* remove folder
* revert to daily testing
* [Generate Docs] Correct docs
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* padding done
* correctly return one attention per layer
* almost correct, attentions are not flatten one tuple per stage
* tests green
* doc
* conversations
* reshaping hidden_states
* view in the test
* reshape_hidden_states in Encoder and Model
* new outputs with reshaped_hidden_states
* conversations
* doc
* Update docs/source/model_doc/swin.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* conversations
* fix tests
* minor changes
* resolved conversations
* attentions one per stage
* typo
* typos
* typos
* function signature
* CI
* clean up tests
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Fix inconsistent example variable naming
- Example code for a sequence classification in Tensorflow had spelling mistakes and incorrect and inconsistent naming
- Changed variable naming to be consistent with the two other TF examples
* Fix incorrect incorrect training examples
* first commit
* ResNet model correctly implemented.
basic modeling + weights conversion is done
removed unused doc
mdx file
doc and conversion script
added feature_extractor to auto
test
minor changes + style + quality
doc
test
Delete process.yml
A left over from my attempt of running circleci locally
* minor changes
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* new test format
* minor changes from conversations
* minor changes from conversations
* make style + quality
* readded the tests
* test + README
* minor changes from conversations
* error in README
* make fix-copies
* removed regression for classification head
* make quality
* fixed loss control flow
* fixed loss control flow
* resolved conversations
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* READMEs
* index.mdx
* minor changes
* updated tests and models
* unused import
* outputs
* Update docs/source/model_doc/resnet.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* added embeddings_size
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* conversation
* added push to hub
* test
* embedding_size
* make fix-copies
* resolved conversations
* CI
* changed organization
* minor changes
* CI
* minor changes
* conversations
* conversation
* doc
* tests
* removed unused docstring
* conversation
* removed unused outputs
* CI
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add ONNX support for ViT
* Refactor to use generic preprocessor
* Add vision dep to tests
* Extend ONNX slow tests to ViT
* Add dummy image generator
* Use model_type to determine modality
* Add deprecation warnings for tokenizer argument
* Add warning when overwriting the preprocessor
* Add optional args to docstrings
* Add minimum PyTorch version to OnnxConfig
* Refactor OnnxConfig class variables from CONSTANT_NAME to snake_case
* Add reasonable value for default atol
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* test
* up
* up
* Empty test commit
* up
* update tests
* up
* fix some vision models
* correct
* correct docs
* Trigger notification
* finalize
* check
* correct quicktour
* Apply suggestions from code review
* improve doctests
* Trigger Build
* next try
* next try
* and again
* Output current clone information
* Output current clone information
* Correct path
* add tf round again
* revert to daily job
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
* added classes to get started with constrained beam search
* in progress, think i can directly force tokens now but not yet with the round robin
* think now i have total control, now need to code the bank selection
* technically works as desired, need to optimize and fix design choices leading to undersirable outputs
* complete PR #1 without disjunctive decoding
* removed incorrect tests
* Delete k.txt
* Delete test.py
* Delete test.sh
* revert changes to test scripts
* genutils
* full implementation with testing, no disjunctive yet
* shifted docs
* passing all tests realistically ran locally
* removing accidentally included print statements
* fixed source of error in initial PR test
* fixing the get_device() vs device trap
* fixed documentation docstrings about constrained_beam_search
* fixed tests having failing for Speech2TextModel's floating point inputs
* fix cuda long tensor
* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search
* deleted accidentally added test halting code with assert False
* code reformat
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
* fixing based on comments on PR
* took out the testing code that should but work fails without the beam search moditification ; style changes
* fixing comments issues
* docstrings for ConstraintListState
* typo in PhrsalConstraint docstring
* docstrings improvements
* finished adding what is sort of an opinionated implementation of disjunctive generation, but it revealed errors in inner beam search logic during testing.
* fixed bug found in constrained beam search that used beam_idx that were not global across all the batches
* disjunctive constraint working 100% correctly
* passing all tests
* Accidentally included mlruns
* Update src/transformers/generation_beam_constraints.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/generation_beam_constraints.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* complete overhaul of type complexities and other nits
* strict type checks in generate()
* fixing second round of feedback by narsil
* fixed failing generation test because of type check overhaul
* generation test fail fix
* fixing test fails
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add TF logits wrappers
* Add sample method
* add tests for TF logit wrappers
* TF generate sample tests now run on CPU
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* maskformer
* conflicts
* conflicts
* minor fixes
* feature extractor test fix
refactor MaskFormerLoss following conversation
MaskFormer related types should not trigger a module time import error
missed one
removed all the types that are not used
update config mapping
minor updates in the doc
resolved conversation that doesn't need a discussion
minor changes
resolved conversations
fixed DetrDecoder
* minor changes
minor changes
fixed mdx file
test feature_extractor return types
functional losses -> classes
removed the return type test for the feature extractor
minor changes + style + quality
* conflicts?
* rebase master
* readme
* added missing files
* deleded poolformers test that where in the wrong palce
* CI
* minor changes
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* resolved conversations
* minor changes
* conversations
[Unispeech] Fix slow tests (#15818)
* remove soundfile old way of loading audio
* Adapt slow test
[Barthez Tokenizer] Fix saving (#15815)
[TFXLNet] Correct tf xlnet generate (#15822)
* [TFXLNet] Correct tf xlnet
* adapt test comment
Fix the push run (#15807)
Fix semantic segmentation pipeline test (#15826)
Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776)
Add model specific output classes to PoolFormer model docs (#15746)
* Added model specific output classes to poolformer docs
* Fixed Segformer typo in Poolformer docs
Adding the option to return_timestamps on pure CTC ASR models. (#15792)
* Adding the option to return_timestamps on pure CTC ASR models.
* Remove `math.prod` which was introduced in Python 3.8
* int are not floats.
* Reworking the PR to support "char" vs "word" output.
* Fixup!
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Quality.
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824)
Fix tf.concatenate + test past_key_values for TF models (#15774)
* fix wrong method name tf.concatenate
* add tests related to causal LM / decoder
* make style and quality
* clean-up
* Fix TFBertModel's extended_attention_mask when past_key_values is provided
* Fix tests
* fix copies
* More tf.int8 -> tf.int32 in TF test template
* clean-up
* Update TF test template
* revert the previous commit + update the TF test template
* Fix TF template extended_attention_mask when past_key_values is provided
* Fix some styles manually
* clean-up
* Fix ValueError: too many values to unpack in the test
* Fix more: too many values to unpack in the test
* Add a comment for extended_attention_mask when there is past_key_values
* Fix TFElectra extended_attention_mask when past_key_values is provided
* Add tests to other TF models
* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder
* Fix not passing training arg to lm_head in TFRobertaForCausalLM
* Fix tests (with past) for TF Roberta
* add testing for pask_key_values for TFElectra model
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
[examples/summarization and translation] fix readme (#15833)
Add ONNX Runtime quantization for text classification notebook (#15817)
Re-enable doctests for the quicktour (#15828)
* Re-enable doctests for the quicktour
* Re-enable doctests for task_summary (#15830)
* Remove &
Framework split model report (#15825)
Add TFConvNextModel (#15750)
* feat: initial implementation of convnext in tensorflow.
* fix: sample code for the classification model.
* chore: added checked for from the classification model.
* chore: set bias initializer in the classification head.
* chore: updated license terms.
* chore: removed ununsed imports
* feat: enabled argument during using drop_path.
* chore: replaced tf.identity with layers.Activation(linear).
* chore: edited default checkpoint.
* fix: minor bugs in the initializations.
* partial-fix: tf model errors for loading pretrained pt weights.
* partial-fix: call method updated
* partial-fix: cross loading of weights (4x3 variables to be matched)
* chore: removed unneeded comment.
* removed playground.py
* rebasing
* rebasing and removing playground.py.
* fix: renaming TFConvNextStage conv and layer norm layers
* chore: added initializers and other minor additions.
* chore: added initializers and other minor additions.
* add: tests for convnext.
* fix: integration tester class.
* fix: issues mentioned in pr feedback (round 1).
* fix: how output_hidden_states arg is propoagated inside the network.
* feat: handling of arg for pure cnn models.
* chore: added a note on equal contribution in model docs.
* rebasing
* rebasing and removing playground.py.
* feat: encapsulation for the convnext trunk.
* Fix variable naming; Test-related corrections; Run make fixup
* chore: added Joao as a contributor to convnext.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: corrected copyright year and added comment on NHWC.
* chore: fixed the black version and ran formatting.
* chore: ran make style.
* chore: removed from_pt argument from test, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* fix: tests in the convnext subclass, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: moved convnext test to the correct location
* fix: locations for the test file of convnext.
* fix: convnext tests.
* chore: applied sgugger's suggestion for dealing w/ output_attentions.
* chore: added comments.
* chore: applied updated quality enviornment style.
* chore: applied formatting with quality enviornment.
* chore: revert to the previous tests/test_modeling_common.py.
* chore: revert to the original test_modeling_common.py
* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py
* fix: tests for convnext.
* chore: removed output_attentions argument from convnext config.
* chore: revert to the earlier tf utils.
* fix: output shapes of the hidden states
* chore: removed unnecessary comment
* chore: reverting to the right test_modeling_tf_common.py.
* Styling nits
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* minor changes
* doc fix in feature extractor
* doc
* typose
* removed detr logic from config
* removed detr logic from config
* removed num_labels
* small fix in the config
* auxilary -> auxiliary
* make style
* some test is failing
* fix a weird char in config prevending doc-builder
* retry to fix the doc-builder issue
* make style
* new try to fix the doc builder
* CI
* change weights to facebook
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* Add data2vec model cloned from roberta
* Add checkpoint conversion script
* Fix copies
* Update docs
* Add checkpoint conversion script
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update documentation
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* add inputs to logits to data2vec'
* correct autio models
* correct config auto
* correct tok auto
* Update utils/tests_fetcher.py
* delete unnecessary files
* delete unnecessary files
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix copies
* Update docs
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update documentation
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* add inputs to logits to data2vec'
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* correct autio models
* correct config auto
* correct tok auto
* delete unnecessary files
* delete unnecessary files
* Update utils/tests_fetcher.py
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Move data2vec tests to new structure
* Fix test imports for text tests
* Remove fairseq files
* Change paper link to arxiv
* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.
* Update text model checkpoint to be facebook/data2vec-text-base
* Add 'Copy from' statements and update paper links and docs
* fix copy from statements
* improve copied from
* correct more copied from statements
* finish copied from stuff
* make style
* add model to README
* add to master
Co-authored-by: Eduardo Gonzalez Ponferrada <eduardo@ferrumhealth.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* rebase
* Delete shift tokens func
* downsample decoder input seq len for init
* correct attention mask
* add tests
* pt flax cross test
* make fixup
* init file for import
* change pt-flax cross test threshold
* pt-flax test logits only
* move tests
* make repo-consistency
* consistent indentation
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* feat: initial implementation of convnext in tensorflow.
* fix: sample code for the classification model.
* chore: added checked for from the classification model.
* chore: set bias initializer in the classification head.
* chore: updated license terms.
* chore: removed ununsed imports
* feat: enabled argument during using drop_path.
* chore: replaced tf.identity with layers.Activation(linear).
* chore: edited default checkpoint.
* fix: minor bugs in the initializations.
* partial-fix: tf model errors for loading pretrained pt weights.
* partial-fix: call method updated
* partial-fix: cross loading of weights (4x3 variables to be matched)
* chore: removed unneeded comment.
* removed playground.py
* rebasing
* rebasing and removing playground.py.
* fix: renaming TFConvNextStage conv and layer norm layers
* chore: added initializers and other minor additions.
* chore: added initializers and other minor additions.
* add: tests for convnext.
* fix: integration tester class.
* fix: issues mentioned in pr feedback (round 1).
* fix: how output_hidden_states arg is propoagated inside the network.
* feat: handling of arg for pure cnn models.
* chore: added a note on equal contribution in model docs.
* rebasing
* rebasing and removing playground.py.
* feat: encapsulation for the convnext trunk.
* Fix variable naming; Test-related corrections; Run make fixup
* chore: added Joao as a contributor to convnext.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: corrected copyright year and added comment on NHWC.
* chore: fixed the black version and ran formatting.
* chore: ran make style.
* chore: removed from_pt argument from test, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* fix: tests in the convnext subclass, ran make style.
* rebasing
* rebasing and removing playground.py.
* rebasing
* rebasing and removing playground.py.
* chore: moved convnext test to the correct location
* fix: locations for the test file of convnext.
* fix: convnext tests.
* chore: applied sgugger's suggestion for dealing w/ output_attentions.
* chore: added comments.
* chore: applied updated quality enviornment style.
* chore: applied formatting with quality enviornment.
* chore: revert to the previous tests/test_modeling_common.py.
* chore: revert to the original test_modeling_common.py
* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py
* fix: tests for convnext.
* chore: removed output_attentions argument from convnext config.
* chore: revert to the earlier tf utils.
* fix: output shapes of the hidden states
* chore: removed unnecessary comment
* chore: reverting to the right test_modeling_tf_common.py.
* Styling nits
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* custom_models: tiny doc addition
* mention security feature earlier in the section
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* [Proposal] Adding ZeroShotImageClassificationPipeline
- Based on CLIP
* WIP, Resurection in progress.
* Resurrection... achieved.
* Reword handling different `padding_value` for `feature_extractor` and
`tokenizer`.
* Thanks doc-builder !
* Adding docs + global namespace `ZeroShotImageClassificationPipeline`.
* Fixing templates.
* Make the test pass and be robust to floating error.
* Adressing suraj's comments on docs mostly.
* Tf support start.
* TF support.
* Update src/transformers/pipelines/zero_shot_image_classification.py
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* doc for adding a model to the hub
* run make style
* resolved conversation
* removed a line
* removed )
* Update docs/source/add_new_model.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Update docs/source/add_new_model.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make style
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Added all files, PoolFormerFeatureExtractor still failing tests
* Fixed PoolFormerFeatureExtractor not being able to import
* Completed Poolformer doc
* Applied Suggested fixes
* Fixed errors in modeling_auto.py
* Fix feature extractor, convert docs to Markdown, styling of code
* Remove PoolFormer from check_repo and fix integration test
* Remove Poolformer from check_repo
* Fixed configuration_poolformer.py docs and removed inference.py from poolformer
* Ran with black v22
* Added PoolFormer to _toctree.yml
* Updated poolformer doc
* Applied suggested fixes and added on README.md
* Did make fixup and make fix-copies, tests should pass now
* Changed PoolFormer weights conversion script name and fixed README
* Applied fixes in test_modeling_poolformer.py and modeling_poolformer.py
* Added PoolFormerFeatureExtractor to AutoFeatureExtractor API
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
* TF generate start refactor
* Add tf tests for sample generate
* re-organize
* boom boom
* Apply suggestions from code review
* re-add
* add all code
* make random greedy pass
* make encoder-decoder random work
* further improvements
* delete bogus file
* make gpt2 and t5 tests work
* finish logits tests
* correct logits processors
* correct past / encoder_outputs drama
* refactor some methods
* another fix
* refactor shape_list
* fix more shape list
* import shape
_list
* finish docs
* fix imports
* make style
* correct tf utils
* Fix TFRag as well
* Apply Lysandre's and Sylvais suggestions
* Update tests/test_generation_tf_logits_process.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Update src/transformers/tf_utils.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* remove cpu according to gante
* correct logit processor
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Add TensorFlow support for ONNX export
* Change documentation to mention conversion with Tensorflow
* Refactor export into export_pytorch and export_tensorflow
* Check model's type instead of framework installation to choose between TF and Pytorch
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Alberto Bégué <alberto.begue@della.ai>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
* added classes to get started with constrained beam search
* in progress, think i can directly force tokens now but not yet with the round robin
* think now i have total control, now need to code the bank selection
* technically works as desired, need to optimize and fix design choices leading to undersirable outputs
* complete PR #1 without disjunctive decoding
* removed incorrect tests
* Delete k.txt
* Delete test.py
* Delete test.sh
* revert changes to test scripts
* genutils
* full implementation with testing, no disjunctive yet
* shifted docs
* passing all tests realistically ran locally
* removing accidentally included print statements
* fixed source of error in initial PR test
* fixing the get_device() vs device trap
* fixed documentation docstrings about constrained_beam_search
* fixed tests having failing for Speech2TextModel's floating point inputs
* fix cuda long tensor
* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search
* deleted accidentally added test halting code with assert False
* code reformat
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update tests/test_generation_utils.py
* fixing based on comments on PR
* took out the testing code that should but work fails without the beam search moditification ; style changes
* fixing comments issues
* docstrings for ConstraintListState
* typo in PhrsalConstraint docstring
* docstrings improvements
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* PoC for a ProcessorMixin class
* Documentation
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Roll out to other processors
* Add base feature extractor class in init
* Use args and kwargs
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add wrapper classes
* convert inner layers to tf
* Add TF Encoder and Decoder layers
* TFSpeech2Text models
* Loadable model
* TF model with same outputs as PT model
* test skeleton
* correct tests and run the fixup
* correct attention expansion
* TFSpeech2Text pask_key_values with TF format
* electra is added to onnx supported model
* add google/electra-base-generator for test onnx module
Co-authored-by: Lewis Tunstall <lewis.c.tunstall@gmail.com>
* add xlm roberta xl
* add convert xlm xl fairseq checkpoint to pytorch
* fix init and documents for xlm-roberta-xl
* fix indention
* add test for XLM-R xl,xxl
* fix model hub name
* fix some stuff
* up
* correct init
* fix more
* fix as suggestions
* add torch_device
* fix default values of doc strings
* fix leftovers
* merge to master
* up
* correct hub names
* fix docs
* fix model
* up
* finalize
* last fix
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add copied from
* make style
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* clean commit of changes
* apply review feedback, make edits
* fix backticks, minor formatting
* 🖍 make fixup and minor edits
* 🖍 fix # in header
* 📝 update code sample without from_pt
* 📝 final review
* Added missing code in exemplary notebook - custom datasets fine-tuning
Added missing code in tokenize_and_align_labels function in the exemplary notebook on custom datasets - token classification.
The missing code concerns adding labels for all but first token in a single word.
The added code was taken directly from huggingface official example - this [colab notebook](https://github.com/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb).
* Changes requested in the review - keep the code as simple as possible
* First commit
* Add conversion script
* Make conversion script work for base model
* More improvements
* Update conversion script, works for vqa
* Add indexing argument to meshgrid
* Make conversion script work for ViltForPreTraining
* Add ViltForPreTraining to docs
* Fix device issue
* Add processor
* Add MinMaxResize to feature extractor
* Implement call method of ViltProcessor
* Fix tests
* Add integration test
* Add loss calculation for VQA
* Improve tests
* Improve some more tests
* Debug tests
* Small improvements
* Add support for attention_mask
* Remove mask_it
* Add pixel_mask
* Add tests for ViltFeatureExtractor
* Improve tests
* Add ViltForNaturalLanguageVisualReasoning
* Add ViltForNaturalLanguageVisualReasoning to conversion script
* Minor fixes
* Add support for image_embeds, update docstrings to markdown
* Update docs to markdown
* Improve conversion script
* Rename ViltForPreTraining to ViltForMaskedLM
* Improve conversion script
* Convert docstrings to markdown
* Fix code example of retrieval model
* Properly convert masked language model
* Add integration test for nlvr
* Fix code quality
* Apply suggestions from code review
* Add copied from statements
* Fix pretrained_config_archive_map
* Fix docs
* Add model to README
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply more suggestions from code review
* Make code more readable
* Add ViltForNaturalLanguageVisualReasoning to the tests
* Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering
* Replace pixel_values_2 by single tensor
* Add hidden_states and attentions
* Fix one more test
* Fix all tests
* Update year
* Fix rebase issues
* Fix another rebase issue
* Remove ViltForPreTraining from auto mapping
* Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval
* Make it possible to use BertTokenizerFast in the processor
* Use BertTokenizerFast by default
* Rename ViltForNaturalLanguageVisualReasoning, define custom model output
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* First draft
* More improvements
* More improvements
* More improvements
* Fix embeddings
* Add conversion script
* Finish conversion script
* More improvements
* Fix forward pass
* Remove print statements
* Add weights initialization
* Add initialization of decoder weights
* Add support for other models in the conversion script
* Fix patch_size for huge model
* Fix most of the tests
* Fix integration test
* Fix docs
* Fix archive_list
* Apply suggestions from code review
* Improve documentation
* Apply more suggestions
* Skip some tests due to non-deterministic behaviour
* Fix test_initialization
* Remove unneccessary initialization of nn.Embedding
* Improve docs
* Fix dummies
* Remove ViTMAEFeatureExtractor from docs
* Add model to README and table of contents
* Delete inference file
* update XLMProphetNet link
* update DPR link
* change prophetnet link
* change link MBART
* change link GPT
* update gpt2 link
* ctrl update link
* update Transformer-XL link
* Update Reformer link
* update xlnet link
* bert update link
* udpate albert link
* roberta update link
* update distilbert link
* update convbert link
* update XLM link
* xlm roberta update link
* update Flaubert link
* update electra link
* update funnel transformer and longformer
* bart update link
* pegasus update link
* udpate marianmt link
* t5 update link
* mt5 update link
* Add ONNX classes to main package
* Remove permalinks from ONNX guide
* Fix ToC entry
* Revert "Add ONNX classes to main package"
This reverts commit eb794a5b00.
* Add ONNX classes to main doc
* Fix syntax highlighting in doc
* Fix text
* Add FeaturesManager to doc
* Use paths to reference ONNX classes
* Add FeaturesManager to init
* Add missing ONNX paths
* Add IBertOnnxConfig and tests
* add all the supported features for IBERT and remove outputs in IbertOnnxConfig
* use OnnxConfig
* fix codestyle
* remove serialization.rst
* codestyle
* Start the work on TFVisionEncoderDecoderModel
* Expose TFVisionEncoderDecoderModel
* fix import
* Add modeling_tf_vision_encoder_decoder to _ignore_modules in get_model_modules()
* reorder
* Apply the fix for checkpoint loading as in #14016
* remove attention_mask + fix VISION_DUMMY_INPUTS
* A minimal change to make TF generate() work for vision models as encoder in encoder-decoder setting
* fix wrong condition: shape_list(input_ids) == 2
* add tests
* use personal TFViTModel checkpoint (for now)
* Add equivalence tests + projection layer
* style
* make sure projection layer can run
* Add examples
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Clean comments (need to work on TODOs for PyTorch models)
* Remove TF -> PT in check_pt_tf_equivalence for TFVisionEncoderDecoderModel
* fixes
* Revert changes in PT code.
* Update tests/test_modeling_tf_vision_encoder_decoder.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add test_inference_coco_en for TF test
* fix quality
* fix name
* build doc
* add main_input_name
* Fix ckpt name in test
* fix diff between master and this PR
* fix doc
* fix style and quality
* fix missing doc
* fix labels handling
* Delete auto.rst
* Add the changes done in #14016
* fix prefix
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make style
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add FlaxRoFormer
* Clean code + make quality
* Fix output pooling for FlaxRoFormerForMultipleChoiceModule
* Apply suggestions from code review
* add flax model to repos
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix bad examples
* Add black formatting to style_doc
* Use first nonempty line
* Put it at the right place
* Don't add spaces to empty lines
* Better templates
* Deal with triple quotes in docstrings
* Result of style_doc
* Enable mdx treatment and fix code examples in MDXs
* Result of doc styler on doc source files
* Last fixes
* Break copy from
* Add ElectraForCausalLM and cover some basic tests & need to fix a few tests
* Fix bugs
* make style
* make fix-copies
* Update doc
* Change docstring to markdown format
* Remove redundant update_keys_to_ignore
* Pipeline chunks.
* Batching for Chunking pipelines ?
* Batching for `question-answering` and `zero-shot-cls`.
* Fixing for FNet.
* Making ASR a chunk pipeline.
* Chunking ASR API.
* doc style.
* Fixing ASR test.
* Fixing QA eror (p_mask, padding is 1, not 0).
* Enable both vad and simple chunking.
* Max length for vad.
* remove inference mode, crashing on s2t.
* Revert ChunkPipeline for ASRpipeline.
Too many knobs for simple integration within the pipeline, better stick
to external convenience functions instead, more control to be had,
simpler pipeline and also easier to replace with other things later.
* Drop necessity for PT for these.
* Enabling generators.
* Add mic + cleanup.
* Typo.
* Typo2.
* Remove ASR work, it does not belong in this PR anymore.
* Update src/transformers/pipelines/pt_utils.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update src/transformers/pipelines/zero_shot_classification.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Adding many comments.
* Doc quality.
* `hidden_states` handling.
* Adding doc.
* Bad rebase.
* Autofixing docs.
* Fixing CRITICAL bug in the new Zerocls pipeline.
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* First commit to add MarianMT to ONNX
* Now MarianModel.forward() automatically generates decoder_input_ids, like BartModel.forward()
* Adjusted MarianOnnxConfig.inputs and outputs to work with seq2seq-lm feature
* Style fix
* Added support for other features for already supported models
* Partial support for causal and seq2seq models
* Partial support for causal and seq2seq models
* Add default task for MarianMT ONNX
* Remove automatic creation of decoder_input_ids
* Extend inputs and outputs for MarianMT ONNX config
* Add MarianMT to ONNX unit tests
* Refactor
* OnnxSeq2SeqConfigWithPast to support seq2seq models
* Parameterized the onnx tests
* Restored run_mlm.py
* Restored run_mlm.py
* [WIP] BART update
* BART and MBART
* Add past_key_values and fix dummy decoder inputs
Using a sequence length of 1 in generate_dummy_outputs() produces large discrepancies, presumably due to some hidden optimisations.
* Refactor MarianOnnxConfig to remove custom past_key_values logic
* Fix quality
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c559.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Refactor Marian export to account for base changes
* Fix copies
* Implemented suggestions
* Extend support for causal LM
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c559.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Implemented suggestions
* Fixed __init__ to resolve conflict with master
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c559.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Implemented suggestions
* Fixed __init__ to resolve conflict with master
* Remove commented import
* Remove ONNX model
* Remove redundant class method
* Tidy up imports
* Fix quality
* Refactor dummy input function
* Add copied from statements to Marian config functions
* Remove false copied from comments
* Fix copy from comment
Co-authored-by: Massimiliano Bruni <massimiliano.bruni@hcl.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* PoC for conserving old links
* Do the same for other links
* remap the redirects section
* add instructions on how to move sections
* improve
Co-authored-by: Stas Bekman <stas@stason.org>
* Test workflow
* Build doc
* Make a clean build
* Add doc config
* Restore other workflows
* Final job
* Print something in else statements
* Pull before making changes
* Convert a few docs
* And another
* Last tutorials
* New syntax for colab links
* Convert a few docs
* And another
* Last tutorials
* New syntax for colab links
* First draft
* Style and remove mlm
* Make forward pass work
* More improvements
* More improvements
* Fix bug
* More improvements
* More improvements
* Add PerceiverTokenizer first draft
* Improve conversion script
* More improvements
* Make conversion script work for the encoder
* Make conversion script work with local pickle files
* Style & quality, fix-copies
* Add dummy input to conversion script
* Add absolute position embeddings to TextPreProcessor
* Make forward pass of encoder work
* More improvements
* Move text preprocessor to separate script
* More improvements
* More improvements
* Add post processor
* Make MLM model work
* Style
* Add PerceiverForMaskedLM
* Add PerceiverImagePreprocessor
* Make style
* Make PerceiverForImageClassification work
* More improvements
* More improvements
* Use tokenizer in conversion script
* Use PerceiverForMaskedLM in conversion script
* Define custom PerceiverModelOutput
* Improve PerceiverAttention to make it work for both MLM and image classification
* More improvements
* More improvements
* More improvements to the conversion script
* Make conversion script work for both MLM and image classification
* Add PerceiverFeatureExtractor
* More improvements
* Style and quality
* Add center cropping
* Fix bug
* Small fix
* Add print statement
* Fix bug in image preprocessor
* Fix bug with conversion script
* Make output position embeddings an nn.Parameter layer instead of nn.Embedding
* Comment out print statements
* Add position encoding classes
* More improvements
* Use position_encoding_kwargs
* Add PerceiverForImageClassificationFourier
* Make style & quality
* Add PerceiverForImageClassificationConvProcessing
* Style & quality
* Add flow model
* Move processors to modeling file
* Make position encodings modular
* Make basic decoder use modular position encodings
* Add PerceiverForOpticalFlow to conversion script
* Add AudioPreprocessor
* Make it possible for the basic decoder to use Fourier position embeddings
* Add PerceiverForMultimodalAutoencoding
* Improve model for optical flow
* Improve _build_network_inputs method
* Add print statement
* Fix device issue
* Fix device of Fourier embeddings
* Add print statements for debugging
* Add another print statement
* Add another print statement
* Add another print statement
* Add another print statement
* Improve PerceiverAudioPreprocessor
* Improve conversion script for multimodal modal
* More improvements
* More improvements
* Improve multimodal model
* Make forward pass multimodal model work
* More improvements
* Improve tests
* Fix some more tests
* Add output dataclasses
* Make more tests pass
* Add print statements for debuggin
* Add tests for image classification
* Add PerceiverClassifierOutput
* More improvements
* Make more tests pass for the optical flow model
* Make style & quality
* Small improvements
* Don't support training for optical flow model for now
* Fix _prepare_for_class for tests
* Make more tests pass, add some docs
* Add multimodal model to tests
* Minor fixes
* Fix tests
* Improve conversion script
* Make fixup
* Remove pos_dim argument
* Fix device issue
* Potential fix for OOM
* Revert previous commit
* Fix test_initialization
* Add print statements for debugging
* Fix print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Remove need for output_shape
* Comment out output_shape
* Remove unnecessary code
* Improve docs
* Fix make fixup
* Remove PerceiverTextProcessor from init
* Improve docs
* Small improvement
* Apply first batch of suggestions from code review
* Apply more suggestions from code review
* Update docstrings
* Define dicts beforehand for readability
* Rename task to architecture in conversion script, include PerceiverModel in tests
* Add print statements for debugging
* Fix tests on GPU
* Remove preprocessors, postprocessors and decoders from main init
* Add integration test
* Fix docs
* Replace einops by torch
* Update for new docs frontend
* Rename PerceiverForImageClassification
* Improve docs
* Improve docs
* Improve docs of PerceiverModel
* Fix some more tests
* Improve center_crop
* Add PerceiverForSequenceClassification
* Small improvements
* Fix tests
* Add integration test for optical flow model
* Clean up
* Add tests for tokenizer
* Fix tokenizer by adding special tokens properly
* Fix CI
* up
* up
* up
* make it cleaner
* correct
* make styhahalal
* add more tests
* finish
* small fix
* make style
* up
* tryout to solve cicrle ci
* up
* fix more tests
* fix more tests
* apply sylvains suggestions
* fix import
* correct docs
* add pyctcdecode only to speech tests
* fix more tests
* add tf, flax and pt tests
* add pt
* fix last tests
* fix more tests
* Apply suggestions from code review
* change lines
* Apply suggestions from code review
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* correct tests
* correct tests
* add doc string
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* implement MLukeTokenizer and LukeForMaskedLM
* update tests
* update docs
* add LukeForMaskedLM to check_repo.py
* update README
* fix test and specify the entity pad id in tokenization_(m)luke
* fix EntityPredictionHeadTransform
* Make DefaultDataCollator importable from root
* Add documentation for DefaultDataCollator and add return_tensors argument to all class docstrings
* make style
* Add DefaultDataCollator to data_collator.rst
* Add DefaultDataCollator to data_collator.rst
* Init Flax implementation for Blenderbot
* Add a majority of stuff except for tests
* make style quality
* Add tests and fix some bugs
* Add tests
* Clean source code and fix some bugs
* Fix copies and docs
* Fix jax device condition for tests
* Fix layer norm in the encoder
* Fix a few typos in the test file
* make fix-copies
* make fix-copies
* fix layer norm
* Fix Flax params dtype (#13090)
* Fix PR reference (#13098)
* make fix-copies
* Update tests/test_modeling_flax_blenderbot.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* TF Tapas first commit
* updated docs
* updated logger message
* updated pytorch weight conversion
script to support scalar array
* added use_cache to tapas model config to
work properly with tf input_processing
* 1. rm embeddings_sum
2. added # Copied
3. + TFTapasMLMHead
4. and lot other small fixes
* updated docs
* + test for tapas
* updated testing_utils to check
is_tensorflow_probability_available
* converted model logits post processing using
numpy to work with both PT and TF models
* + TFAutoModelForTableQuestionAnswering
* added TF support
* added test for
TFAutoModelForTableQuestionAnswering
* added test for
TFAutoModelForTableQuestionAnswering pipeline
* updated auto model docs
* fixed typo in import
* added tensorflow_probability to run tests
* updated MLM head
* updated tapas.rst with TF model docs
* fixed optimizer import in docs
* updated convert to np
data from pt model is not
`transformers.tokenization_utils_base.BatchEncoding`
after pipeline upgrade
* updated pipeline:
1. with torch.no_gard removed, pipeline forward handles
2. token_type_ids converted to numpy
* updated docs.
* removed `use_cache` from config
* removed floats_tensor
* updated code comment
* updated Copyright Year and
logits_aggregation Optional
* updated docs and comments
* updated docstring
* fixed model weight loading
* make fixup
* fix indentation
* added tf slow pipeline test
* pip upgrade
* upgrade python to 3.7
* removed from_pt from tests
* revert commit f18cfa9
* added save_directories for _psave_pretrained_pt and _tf, changed model to tf_model and pt_model, enable the notebook to run cleanly from top to bottom without error
* Update quicktour.rst
* added >>>
* dependencies
* added space
* [deepspeed] zero inference
* only z3 makes sense for inference
* fix and style
* docs
* rework
* fix test
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* responding to suggestions
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Start the work for TFViTModel
* Convert to TF code - need to check in the follow up commits
* Clean up model code
* Expose TFViTModel
* make style
* make quality
* Add test
* make style & quality
* Fix some imports
* fix wrong usage - *kwargs => ** kwargs
* Fix Conv2D weight loading (PT->TF) issue
* Add tests for images with different sizes + fix model
* Fix some common tests for TFViTModel
* Use inputs instead of input_ids in test_compile_tf_model
* Add a comment about transpose and Conv2D in convert_tf_weight_name_to_pt_weight_name
* Avoid transpose in TFViT call
* Fix Conv2D issue in load_tf2_weights_in_pytorch_model
* Use tf.keras.layers.Conv2D instead of tf.nn.conv2d
* Using simpler heuristic to detect Conv2D layer
* Change convert_tf_weight_name_to_pt_weight_name to return TransposeType
* Check tf_weight_shape is not None before using it
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix missing comma
* fix input dtype
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Start PR doc
* Cleanup the quality checks and document them
* Add reference in the contributing guide
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Rename file as per review suggestion
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* add Beit model ouput class
* inherting from BaseModelOuputWithPooling
* updated docs if use_mean_pooling is False
* added beit specific outputs in model docs
* changed the import path
* Fix docs
Co-authored-by: Niels Rogge <niels.rogge1@gmail.com>
* Add first draft
* Make forward pass work
* Improve conversion script
* Add notebook that checks if it works
* Add BeitForSemanticSegmentation to the tests
* More improvements
* Make BeitForSemanticSegmentation consistent with Segformer
* Small bug fix
* Add BeitForSemanticSegmentation to docs
* Make sure model doesn't output hidden states when the user doesn't want to
* Make it possible to convert the large model
* Fix issue
* Fix conversion script for large model
* Add auxiliary_head option to semantic segmentation model
* Apply suggestions from @sgugger's review
* Apply suggestions from code review
* Fix failing test
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
* Add the support for the fast (rust) implementation of BlenbderbotTokenizer
* Fix a converter and a typo in a doc
* Apply the patil-suraj's suggestion
* (Nitpick) Fast tokenization -> Fast Tokenization in doc
* Apply the SaulLu's suggestion
* Apply Narsil's suggestion to fix test pipelines
* Add encoder_no_repeat_ngram_size according to the Narsil's suggestion
* Revert the last (unnecessary) commit
* Override pipeline config for Blenderbot to allow for larger pos. emb.
* make fix-copies
* First draft
* Make style & quality
* Improve conversion script
* Add print statement to see actual slice
* Make absolute tolerance smaller
* Fix image classification models
* Add post_process_semantic method
* Disable padding
* Improve conversion script
* Rename to ForSemanticSegmentation, add integration test, remove post_process methods
* Improve docs
* Fix code quality
* Fix feature extractor tests
* Fix tests for image classification model
* Delete file
* Add is_torch_available to feature extractor
* Improve documentation of feature extractor methods
* Apply suggestions from @sgugger's code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply some more suggestions of code review
* Rebase with master
* Fix rebase issues
* Make sure model only outputs hidden states when the user wants to
* Apply suggestions from code review
* Add pad method
* Support padding of 2d images
* Add print statement
* Add print statement
* Move padding method to SegformerFeatureExtractor
* Fix issue
* Add casting of segmentation maps
* Add test for padding
* Add small note about padding
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* unispeech
* add copy from
* remove hubert copy from
* finish for today
* add unispeech-sat
* adapt more
* up
* up
* up
* up
* add modeling
* add tests
* up
* up
* finish
* up
* Apply suggestions from code review
* up
* up
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* up
* up
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Add Camembert to models exportable with ONNX
Co-authored-by: Thomas.Chaigneau <thomas.chaigneau@arkea.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Add API to register a new object in auto classes
* Fix test
* Documentation
* Add to tokenizers and test
* Add cleanup after tests
* Be more careful
* Move import
* Move import
* Cleanup in TF test too
* Add consistency check
* Add documentation
* Style
* Update docs/source/model_doc/auto.rst
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update src/transformers/models/auto/auto_factory.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* First draft
* Update self-attention of RoBERTa as proposition
* Improve conversion script
* Add TrOCR decoder-only model
* More improvements
* Make forward pass with pretrained weights work
* More improvements
* Some more improvements
* More improvements
* Make conversion work
* Clean up print statements
* Add documentation, processor
* Add test files
* Small improvements
* Some more improvements
* Make fix-copies, improve docs
* Make all vision encoder decoder model tests pass
* Make conversion script support other models
* Update URL for OCR image
* Update conversion script
* Fix style & quality
* Add support for the large-printed model
* Fix some issues
* Add print statement for debugging
* Add print statements for debugging
* Make possible fix for sinusoidal embedding
* Further debugging
* Potential fix v2
* Add more print statements for debugging
* Add more print statements for debugging
* Deubg more
* Comment out print statements
* Make conversion of large printed model possible, address review comments
* Make it possible to convert the stage1 checkpoints
* Clean up code, apply suggestions from code review
* Apply suggestions from code review, use Microsoft models in tests
* Rename encoder_hidden_size to cross_attention_hidden_size
* Improve docs
* Add cross attentions to TFGPT2Model
* Add TFEncoderDecoderModel
* Add TFBaseModelOutputWithPoolingAndCrossAttentions
* Add cross attentions to TFBertModel
* Fix past or past_key_values argument issue
* Fix generation
* Fix save and load
* Add some checks and comments
* Clean the code that deals with past keys/values
* Add kwargs to processing_inputs
* Add serving_output to TFEncoderDecoderModel
* Some cleaning + fix use_cache value issue
* Fix tests + add bert2bert/bert2gpt2 tests
* Fix more tests
* Ignore crossattention.bias when loading GPT2 weights into TFGPT2
* Fix return_dict_in_generate in tf generation
* Fix is_token_logit_eos_token bug in tf generation
* Finalize the tests after fixing some bugs
* Fix another is_token_logit_eos_token bug in tf generation
* Add/Update docs
* Add TFBertEncoderDecoderModelTest
* Clean test script
* Add TFEncoderDecoderModel to the library
* Add cross attentions to TFRobertaModel
* Add TFRobertaEncoderDecoderModelTest
* make style
* Change the way of position_ids computation
* bug fix
* Fix copies in tf_albert
* Remove some copied from and apply some fix-copies
* Remove some copied
* Add cross attentions to some other TF models
* Remove encoder_hidden_states from TFLayoutLMModel.call for now
* Make style
* Fix TFRemBertForCausalLM
* Revert the change to longformer + Remove copies
* Revert the change to albert and convbert + Remove copies
* make quality
* make style
* Add TFRembertEncoderDecoderModelTest
* make quality and fix-copies
* test TFRobertaForCausalLM
* Fixes for failed tests
* Fixes for failed tests
* fix more tests
* Fixes for failed tests
* Fix Auto mapping order
* Fix TFRemBertEncoder return value
* fix tf_rembert
* Check copies are OK
* Fix missing TFBaseModelOutputWithPastAndCrossAttentions is not defined
* Add TFEncoderDecoderModelSaveLoadTests
* fix tf weight loading
* check the change of use_cache
* Revert the change
* Add missing test_for_causal_lm for TFRobertaModelTest
* Try cleaning past
* fix _reorder_cache
* Revert some files to original versions
* Keep as many copies as possible
* Apply suggested changes - Use raise ValueError instead of assert
* Move import to top
* Fix wrong require_torch
* Replace more assert by raise ValueError
* Add test_pt_tf_model_equivalence (the test won't pass for now)
* add test for loading/saving
* finish
* finish
* Remove test_pt_tf_model_equivalence
* Update tf modeling template
* Remove pooling, added in the prev. commit, from MainLayer
* Update tf modeling test template
* Move inputs["use_cache"] = False to modeling_tf_utils.py
* Fix torch.Tensor in the comment
* fix use_cache
* Fix missing use_cache in ElectraConfig
* Add a note to from_pretrained
* Fix style
* Change test_encoder_decoder_save_load_from_encoder_decoder_from_pt
* Fix TFMLP (in TFGPT2) activation issue
* Fix None past_key_values value in serving_output
* Don't call get_encoderdecoder_model in TFEncoderDecoderModelTest.test_configuration_tie until we have a TF checkpoint on Hub
* Apply review suggestions - style for cross_attns in serving_output
* Apply review suggestions - change assert + docstrings
* break the error message to respect the char limit
* deprecate the argument past
* fix docstring style
* Update the encoder-decoder rst file
* fix Unknown interpreted text role "method"
* fix typo
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Keras callback to push to hub each epoch, or after N steps
* Reworked the callback to use Repository
* Use an Enum for save_strategy
* Style pass
* Correct type for tokenizer
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/keras_callbacks.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Adding print message to the final upload
* Adding print message to the final upload
* Change how we wait for the last process to finish
* is_done is a property, not a method, derp
* Docstrings and documentation
* Style pass
* Style edit
* Docstring reformat
* Docstring rewrite
* Replacing print with internal logger
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Make gradient_checkpointing a training argument
* Update src/transformers/modeling_utils.py
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Update src/transformers/configuration_utils.py
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Fix tests
* Style
* document Gradient Checkpointing as a performance feature
* Small rename
* PoC for not using the config
* Adapt BC to new PoC
* Forgot to save
* Rollout changes to all other models
* Fix typo
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
* beit-flax
* updated FLAX_BEIT_MLM_DOCSTRING
* removed bool_masked_pos from classification
* updated Copyright
* code refactoring: x -> embeddings
* updated test: rm from_pt
* Update docs/source/model_doc/beit.rst
* model code dtype updates and
other changes according to review
* relative_position_bias
revert back to pytorch design
* Init FNet
* Update config
* Fix config
* Update model classes
* Update tokenizers to use sentencepiece
* Fix errors in model
* Fix defaults in config
* Remove position embedding type completely
* Fix typo and take only real numbers
* Fix type vocab size in configuration
* Add projection layer to embeddings
* Fix position ids bug in embeddings
* Add minor changes
* Add conversion script and remove CausalLM vestiges
* Fix conversion script
* Fix conversion script
* Remove CausalLM Test
* Update checkpoint names to dummy checkpoints
* Add tokenizer mapping
* Fix modeling file and corresponding tests
* Add tokenization test file
* Add PreTraining model test
* Make style and quality
* Make tokenization base tests work
* Update docs
* Add FastTokenizer tests
* Fix fast tokenizer special tokens
* Fix style and quality
* Remove load_tf_weights vestiges
* Add FNet to main README
* Fix configuration example indentation
* Comment tokenization slow test
* Fix style
* Add changes from review
* Fix style
* Remove bos and eos tokens from tokenizers
* Add tokenizer slow test, TPU transforms, NSP
* Add scipy check
* Add scipy availabilty check to test
* Fix tokenizer and use correct inputs
* Remove remaining TODOs
* Fix tests
* Fix tests
* Comment Fourier Test
* Uncomment Fourier Test
* Change to google checkpoint
* Add changes from review
* Fix activation function
* Fix model integration test
* Add more integration tests
* Add comparison steps to MLM integration test
* Fix style
* Add masked tokenization fix
* Improve mask tokenization fix
* Fix index docs
* Add changes from review
* Fix issue
* Fix failing import in test
* some more fixes
* correct fast tokenizer
* finalize
* make style
* Remove additional tokenization logic
* Set do_lower_case to False
* Allow keeping accents
* Fix tokenization test
* Fix FNet Tokenizer Fast
* fix tests
* make style
* Add tips to FNet docs
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* Enabling dataset iteration on pipelines.
Enabling dataset iteration on pipelines.
Unifying parameters under `set_parameters` function.
Small fix.
Last fixes after rebase
Remove print.
Fixing text2text `generate_kwargs`
No more `self.max_length`.
Fixing tf only conversational.
Consistency in start/stop index over TF/PT.
Speeding up drastically on TF (nasty bug where max_length would increase
a ton.)
Adding test for support for non fast tokenizers.
Fixign GPU usage on zero-shot.
Fix working on Tf.
Update src/transformers/pipelines/base.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update src/transformers/pipelines/base.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Small cleanup.
Remove all asserts + simple format.
* Fixing audio-classification for large PR.
* Overly explicity null checking.
* Encapsulating GPU/CPU pytorch manipulation directly within `base.py`.
* Removed internal state for parameters of the pipeline.
Instead of overriding implicitly internal state, we moved
to real named arguments on every `preprocess`, `_forward`,
`postprocess` function.
Instead `_sanitize_parameters` will be used to split all kwargs
of both __init__ and __call__ into the 3 kinds of named parameters.
* Move import warnings.
* Small fixes.
* Quality.
* Another small fix, using the CI to debug faster.
* Last fixes.
* Last fix.
* Small cleanup of tensor moving.
* is not None.
* Adding a bunch of docs + a iteration test.
* Fixing doc style.
* KeyDataset = None guard.
* RRemoving the Cuda test for pipelines (was testing).
* Even more simple iteration test.
* Correct import .
* Long day.
* Fixes in docs.
* [WIP] migrating object detection.
* Fixed the target_size bug.
* Fixup.
* Bad variable name.
* Fixing `ensure_on_device` respects original ModelOutput.
* [docs] update dead quickstart link on resuing past for GPT2
Thed dead link have been replaced by two links of forward and call methods of the GPT2 class for torch and tensorflow respectively.
* [docs] fix formatting for gpt2 page update
* refactor GPT Config to allow dyn. properties
* make attribute_map a class attribute
* remove old code
* update unit test to test config: Add test for common properties setter
* update unit test to test config: Add test for common properties passed as parameters to __init__
* update to black code format
* Allow that setters are not defined for certain config classes
* update config classes to implement attribute_map
* bugfix lxmert config - id2labels was not defined when num_labels was set
* update broken configs - add attribute_maps
* update bart config
* update black codestyle
* update documentation on common config attributes
* update GPTJ config to new attribute map
* update docs on common attributes
* gptj config: add max_position_embeddings
* gptj config: format with black
* update speech to text 2 config
* format doc file to max_len 119
* update config template
* [docs] Update perplexity.rst to use negative log likelihood
Model `forward` returns the negative log likelihood. The document correctly defines and calculates perplexity, but the description and variable names are inconsistent, which might cause confusion.
* [docs] restyle perplexity.rst
* fix_torch_device_generate_test
* remove @
* up
* correct some bugs
* correct model
* finish speech2text extension
* up
* up
* up
* up
* Update utils/custom_init_isort.py
* up
* up
* update with tokenizer
* correct old tok
* correct old tok
* fix bug
* up
* up
* add more tests
* up
* fix docs
* up
* fix some more tests
* add better config
* correct some more things
"
* fix tests
* improve docs
* Apply suggestions from code review
* Apply suggestions from code review
* final fixes
* finalize
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* apply suggestions Lysandre and Sylvain
* apply nicos suggestions
* upload everything
* finish
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: your_github_username <your_github_email>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Add the audio classification pipeline
* Remove autoconfig exception
* Mark ffmpeg test as slow
* Rearrange pipeline tests
* Add small test
* Replace asserts with ValueError
* Adding a TF variant of the DataCollatorForTokenClassification to get feedback
* Added a Numpy variant and a post_init check to fail early if a missing import is found
* Fixed call to Numpy variant
* Added a couple more of the collators
* Update src/transformers/data/data_collator.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fixes, style pass, finished DataCollatorForSeqToSeq
* Added all the LanguageModeling DataCollators, except SOP and PermutationLanguageModeling
* Adding DataCollatorForPermutationLanguageModeling
* Style pass
* Add missing `__call__` for PLM
* Remove `post_init` checks for frameworks because the imports inside them were making us fail code quality checks
* Remove unused imports
* First attempt at some TF tests
* A second attempt to make any of those tests actually work
* TF tests, round three
* TF tests, round four
* TF tests, round five
* TF tests, all enabled!
* Style pass
* Merging tests into `test_data_collator.py`
* Merging tests into `test_data_collator.py`
* Fixing up test imports
* Fixing up test imports
* Trying shuffling the conditionals around
* Commenting out non-functional old tests
* Completed all tests for all three frameworks
* Style pass
* Fixed test typo
* Style pass
* Move standard `__call__` method to mixin
* Rearranged imports for `test_data_collator`
* Fix data collator typo "torch" -> "pt"
* Fixed the most embarrassingly obvious bug
* Update src/transformers/data/data_collator.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Renaming mixin
* Updating docs
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dalton Walker <dalton_walker@icloud.com>
Co-authored-by: Andrew Romans <andrew.romans@hotmail.com>