mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Add BlenderbotTokenizerFast
(#13720)
* Add the support for the fast (rust) implementation of BlenbderbotTokenizer * Fix a converter and a typo in a doc * Apply the patil-suraj's suggestion * (Nitpick) Fast tokenization -> Fast Tokenization in doc * Apply the SaulLu's suggestion * Apply Narsil's suggestion to fix test pipelines * Add encoder_no_repeat_ngram_size according to the Narsil's suggestion * Revert the last (unnecessary) commit * Override pipeline config for Blenderbot to allow for larger pos. emb. * make fix-copies
This commit is contained in:
parent
5b45422b58
commit
d37f1fb8ba
@ -379,7 +379,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|
||||
| BigBirdPegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|
||||
| Blenderbot | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|
||||
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|
||||
|
@ -81,6 +81,13 @@ BlenderbotTokenizer
|
||||
:members: build_inputs_with_special_tokens
|
||||
|
||||
|
||||
BlenderbotTokenizerFast
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: transformers.BlenderbotTokenizerFast
|
||||
:members: build_inputs_with_special_tokens
|
||||
|
||||
|
||||
BlenderbotModel
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|
@ -398,6 +398,7 @@ if is_tokenizers_available():
|
||||
_import_structure["models.barthez"].append("BarthezTokenizerFast")
|
||||
_import_structure["models.bert"].append("BertTokenizerFast")
|
||||
_import_structure["models.big_bird"].append("BigBirdTokenizerFast")
|
||||
_import_structure["models.blenderbot"].append("BlenderbotTokenizerFast")
|
||||
_import_structure["models.camembert"].append("CamembertTokenizerFast")
|
||||
_import_structure["models.deberta"].append("DebertaTokenizerFast")
|
||||
_import_structure["models.distilbert"].append("DistilBertTokenizerFast")
|
||||
@ -2285,6 +2286,7 @@ if TYPE_CHECKING:
|
||||
from .models.barthez import BarthezTokenizerFast
|
||||
from .models.bert import BertTokenizerFast
|
||||
from .models.big_bird import BigBirdTokenizerFast
|
||||
from .models.blenderbot import BlenderbotTokenizerFast
|
||||
from .models.blenderbot_small import BlenderbotSmallTokenizerFast
|
||||
from .models.camembert import CamembertTokenizerFast
|
||||
from .models.clip import CLIPTokenizerFast
|
||||
|
@ -893,12 +893,42 @@ class LayoutLMv2Converter(Converter):
|
||||
return tokenizer
|
||||
|
||||
|
||||
class BlenderbotConverter(Converter):
|
||||
def converted(self) -> Tokenizer:
|
||||
ot = self.original_tokenizer
|
||||
vocab = ot.encoder
|
||||
merges = list(ot.bpe_ranks.keys())
|
||||
|
||||
tokenizer = Tokenizer(
|
||||
BPE(
|
||||
vocab=vocab,
|
||||
merges=merges,
|
||||
dropout=None,
|
||||
continuing_subword_prefix="",
|
||||
end_of_word_suffix="",
|
||||
fuse_unk=False,
|
||||
)
|
||||
)
|
||||
|
||||
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
||||
tokenizer.decoder = decoders.ByteLevel()
|
||||
tokenizer.post_processor = processors.TemplateProcessing(
|
||||
single=f"$A:0 {ot.eos_token}:0",
|
||||
special_tokens=[
|
||||
(ot.eos_token, ot.eos_token_id),
|
||||
],
|
||||
)
|
||||
|
||||
return tokenizer
|
||||
|
||||
|
||||
SLOW_TO_FAST_CONVERTERS = {
|
||||
"AlbertTokenizer": AlbertConverter,
|
||||
"BartTokenizer": RobertaConverter,
|
||||
"BarthezTokenizer": BarthezConverter,
|
||||
"BertTokenizer": BertConverter,
|
||||
"BigBirdTokenizer": BigBirdConverter,
|
||||
"BlenderbotTokenizer": BlenderbotConverter,
|
||||
"CamembertTokenizer": CamembertConverter,
|
||||
"CLIPTokenizer": CLIPConverter,
|
||||
"ConvBertTokenizer": BertConverter,
|
||||
|
@ -108,7 +108,7 @@ else:
|
||||
),
|
||||
("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
|
||||
("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
|
||||
("blenderbot", ("BlenderbotTokenizer", None)),
|
||||
("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
|
||||
("bart", ("BartTokenizer", "BartTokenizerFast")),
|
||||
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
|
||||
("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
|
||||
|
@ -18,7 +18,7 @@
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...file_utils import _LazyModule, is_tf_available, is_torch_available
|
||||
from ...file_utils import _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available
|
||||
|
||||
|
||||
_import_structure = {
|
||||
@ -26,6 +26,9 @@ _import_structure = {
|
||||
"tokenization_blenderbot": ["BlenderbotTokenizer"],
|
||||
}
|
||||
|
||||
if is_tokenizers_available():
|
||||
_import_structure["tokenization_blenderbot_fast"] = ["BlenderbotTokenizerFast"]
|
||||
|
||||
if is_torch_available():
|
||||
_import_structure["modeling_blenderbot"] = [
|
||||
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
@ -48,6 +51,9 @@ if TYPE_CHECKING:
|
||||
from .configuration_blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig
|
||||
from .tokenization_blenderbot import BlenderbotTokenizer
|
||||
|
||||
if is_tokenizers_available():
|
||||
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
|
||||
|
||||
if is_torch_available():
|
||||
from .modeling_blenderbot import (
|
||||
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
|
@ -14,7 +14,7 @@
|
||||
# limitations under the License.
|
||||
"""Tokenization class for Blenderbot."""
|
||||
|
||||
from typing import TYPE_CHECKING, List
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...utils import logging
|
||||
from ..roberta.tokenization_roberta import RobertaTokenizer
|
||||
@ -58,7 +58,7 @@ class BlenderbotTokenizer(RobertaTokenizer):
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None):
|
||||
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None):
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||||
adding special tokens. A Blenderbot sequence has the following format:
|
||||
|
@ -0,0 +1,96 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Fast Tokenization class for Blenderbot."""
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...utils import logging
|
||||
from ..roberta.tokenization_roberta_fast import RobertaTokenizerFast
|
||||
from .tokenization_blenderbot import BlenderbotTokenizer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.pipelines.conversational import Conversation
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
VOCAB_FILES_NAMES = {
|
||||
"vocab_file": "vocab.json",
|
||||
"merges_file": "merges.txt",
|
||||
"tokenizer_config_file": "tokenizer_config.json",
|
||||
}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
|
||||
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
|
||||
"tokenizer_config_file": {
|
||||
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
|
||||
},
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/blenderbot-3B": 128}
|
||||
|
||||
|
||||
class BlenderbotTokenizerFast(RobertaTokenizerFast):
|
||||
r"""
|
||||
Construct a "fast" Blenderbot tokenizer (backed by HuggingFace's `tokenizers` library).
|
||||
|
||||
:class:`~transformers.BlenderbotFast` is nearly identical to :class:`~transformers.RobertaTokenizerFast` and runs
|
||||
end-to-end tokenization: punctuation splitting and wordpiece. The only difference is that it doesn't add BOS token
|
||||
to the beginning of sequences.
|
||||
|
||||
Refer to superclass :class:`~transformers.RobertaTokenizerFast` for usage examples and documentation concerning
|
||||
parameters.
|
||||
"""
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
slow_tokenizer_class = BlenderbotTokenizer
|
||||
|
||||
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None):
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||||
adding special tokens. A Blenderbot sequence has the following format:
|
||||
|
||||
- single sequence: `` X </s>``
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs to which the special tokens will be added
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
Will be ignored
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
||||
"""
|
||||
return token_ids_0 + [self.eos_token_id]
|
||||
|
||||
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
|
||||
inputs = []
|
||||
for is_user, text in conversation.iter_texts():
|
||||
if is_user:
|
||||
# We need to space prefix as it's being done within blenderbot
|
||||
inputs.append(" " + text)
|
||||
else:
|
||||
# Generated responses should contain them already.
|
||||
inputs.append(text)
|
||||
|
||||
full_string = " ".join(inputs)
|
||||
input_ids = self.encode(full_string)
|
||||
if len(input_ids) > self.model_max_length:
|
||||
input_ids = input_ids[-self.model_max_length :]
|
||||
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.")
|
||||
return input_ids
|
@ -47,6 +47,15 @@ class BigBirdTokenizerFast:
|
||||
requires_backends(cls, ["tokenizers"])
|
||||
|
||||
|
||||
class BlenderbotTokenizerFast:
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["tokenizers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["tokenizers"])
|
||||
|
||||
|
||||
class BlenderbotSmallTokenizerFast:
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["tokenizers"])
|
||||
|
@ -137,6 +137,11 @@ class BlenderbotModelTester:
|
||||
pad_token_id=self.pad_token_id,
|
||||
)
|
||||
|
||||
def get_pipeline_config(self):
|
||||
config = self.get_config()
|
||||
config.max_position_embeddings = 100
|
||||
return config
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config, inputs_dict = self.prepare_config_and_inputs()
|
||||
return config, inputs_dict
|
||||
|
@ -124,6 +124,11 @@ class PipelineTestCaseMeta(type):
|
||||
def test(self):
|
||||
if ModelClass.__name__.endswith("ForCausalLM"):
|
||||
tiny_config.is_encoder_decoder = False
|
||||
if hasattr(tiny_config, "encoder_no_repeat_ngram_size"):
|
||||
# specific for blenderbot which supports both decoder-only
|
||||
# encoder/decoder but the test config only reflects
|
||||
# encoder/decoder arch
|
||||
tiny_config.encoder_no_repeat_ngram_size = 0
|
||||
if ModelClass.__name__.endswith("WithLMHead"):
|
||||
tiny_config.is_decoder = True
|
||||
try:
|
||||
|
@ -16,8 +16,8 @@
|
||||
"""Tests for Blenderbot Tokenizers, including common tests for BlenderbotSmallTokenizer."""
|
||||
import unittest
|
||||
|
||||
from transformers import BlenderbotTokenizer, BlenderbotTokenizerFast
|
||||
from transformers.file_utils import cached_property
|
||||
from transformers.models.blenderbot.tokenization_blenderbot import BlenderbotTokenizer
|
||||
|
||||
|
||||
class Blenderbot3BTokenizerTests(unittest.TestCase):
|
||||
@ -25,6 +25,10 @@ class Blenderbot3BTokenizerTests(unittest.TestCase):
|
||||
def tokenizer_3b(self):
|
||||
return BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
|
||||
|
||||
@cached_property
|
||||
def rust_tokenizer_3b(self):
|
||||
return BlenderbotTokenizerFast.from_pretrained("facebook/blenderbot-3B")
|
||||
|
||||
def test_encode_decode_cycle(self):
|
||||
tok = self.tokenizer_3b
|
||||
src_text = " I am a small frog."
|
||||
@ -32,6 +36,17 @@ class Blenderbot3BTokenizerTests(unittest.TestCase):
|
||||
decoded = tok.batch_decode(encoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
assert src_text == decoded
|
||||
|
||||
def test_encode_decode_cycle_rust_tokenizer(self):
|
||||
tok = self.rust_tokenizer_3b
|
||||
src_text = " I am a small frog."
|
||||
encoded = tok([src_text], padding=False, truncation=False)["input_ids"]
|
||||
decoded = tok.batch_decode(encoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
assert src_text == decoded
|
||||
|
||||
def test_3B_tokenization_same_as_parlai(self):
|
||||
assert self.tokenizer_3b.add_prefix_space
|
||||
assert self.tokenizer_3b([" Sam", "Sam"]).input_ids == [[5502, 2], [5502, 2]]
|
||||
|
||||
def test_3B_tokenization_same_as_parlai_rust_tokenizer(self):
|
||||
assert self.rust_tokenizer_3b.add_prefix_space
|
||||
assert self.rust_tokenizer_3b([" Sam", "Sam"]).input_ids == [[5502, 2], [5502, 2]]
|
||||
|
Loading…
Reference in New Issue
Block a user