[Doctests] Correct task summary (#16644)

This commit is contained in:
Patrick von Platen 2022-04-11 14:59:35 +02:00 committed by GitHub
parent 6ef7186b5d
commit 098b002644
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1090,16 +1090,15 @@ The following examples demonstrate how to use a [`pipeline`] and a model and tok
>>> from transformers import pipeline
>>> vision_classifier = pipeline(task="image-classification")
>>> vision_classifier(
>>> result = vision_classifier(
... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
[{'label': 'lynx, catamount', 'score': 0.4403027892112732},
{'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
'score': 0.03433405980467796},
{'label': 'snow leopard, ounce, Panthera uncia',
'score': 0.032148055732250214},
{'label': 'Egyptian cat', 'score': 0.02353910356760025},
{'label': 'tiger cat', 'score': 0.023034192621707916}]
>>> print("\n".join([f"Class {d['label']} with score {round(d['score'], 4)}" for d in result]))
Class lynx, catamount with score 0.4335
Class cougar, puma, catamount, mountain lion, painter, panther, Felis concolor with score 0.0348
Class snow leopard, ounce, Panthera uncia with score 0.0324
Class Egyptian cat with score 0.0239
Class tiger cat with score 0.0229
```
The general process for using a model and feature extractor for image classification is: