mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Add TF implementation of GPT-J (#15623)
* Initial commit * Add TFGPTJModel * Fix a forward pass * Add TFGPTJCausalLM * Add TFGPTJForSequenceClassification * Add TFGPTJForQuestionAnswering * Fix docs * Deal with TF dynamic shapes * Add Loss parents to models * Adjust split and merge heads to handle 4 and 5-dim tensors * Update outputs for @tooslow tests
This commit is contained in:
parent
aa4c0a86dc
commit
ed2ee373d0
@ -205,7 +205,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| GPT-J | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
|
@ -130,6 +130,26 @@ model.
|
||||
[[autodoc]] GPTJForQuestionAnswering
|
||||
- forward
|
||||
|
||||
## TFGPTJModel
|
||||
|
||||
[[autodoc]] TFGPTJModel
|
||||
- call
|
||||
|
||||
## TFGPTJForCausalLM
|
||||
|
||||
[[autodoc]] TFGPTJForCausalLM
|
||||
- call
|
||||
|
||||
## TFGPTJForSequenceClassification
|
||||
|
||||
[[autodoc]] TFGPTJForSequenceClassification
|
||||
- call
|
||||
|
||||
## TFGPTJForQuestionAnswering
|
||||
|
||||
[[autodoc]] TFGPTJForQuestionAnswering
|
||||
- call
|
||||
|
||||
## FlaxGPTJModel
|
||||
|
||||
[[autodoc]] FlaxGPTJModel
|
||||
|
@ -1929,6 +1929,15 @@ if is_tf_available():
|
||||
"TFGPT2PreTrainedModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.gptj"].extend(
|
||||
[
|
||||
"TFGPTJForCausalLM",
|
||||
"TFGPTJForQuestionAnswering",
|
||||
"TFGPTJForSequenceClassification",
|
||||
"TFGPTJModel",
|
||||
"TFGPTJPreTrainedModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.hubert"].extend(
|
||||
[
|
||||
"TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
@ -4003,6 +4012,13 @@ if TYPE_CHECKING:
|
||||
TFGPT2Model,
|
||||
TFGPT2PreTrainedModel,
|
||||
)
|
||||
from .models.gptj import (
|
||||
TFGPTJForCausalLM,
|
||||
TFGPTJForQuestionAnswering,
|
||||
TFGPTJForSequenceClassification,
|
||||
TFGPTJModel,
|
||||
TFGPTJPreTrainedModel,
|
||||
)
|
||||
from .models.hubert import (
|
||||
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
TFHubertForCTC,
|
||||
|
@ -52,6 +52,7 @@ TF_MODEL_MAPPING_NAMES = OrderedDict(
|
||||
("bert", "TFBertModel"),
|
||||
("openai-gpt", "TFOpenAIGPTModel"),
|
||||
("gpt2", "TFGPT2Model"),
|
||||
("gptj", "TFGPTJModel"),
|
||||
("mobilebert", "TFMobileBertModel"),
|
||||
("transfo-xl", "TFTransfoXLModel"),
|
||||
("xlnet", "TFXLNetModel"),
|
||||
@ -123,6 +124,7 @@ TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
|
||||
("bert", "TFBertForMaskedLM"),
|
||||
("openai-gpt", "TFOpenAIGPTLMHeadModel"),
|
||||
("gpt2", "TFGPT2LMHeadModel"),
|
||||
("gptj", "TFGPTJForCausalLM"),
|
||||
("mobilebert", "TFMobileBertForMaskedLM"),
|
||||
("transfo-xl", "TFTransfoXLLMHeadModel"),
|
||||
("xlnet", "TFXLNetLMHeadModel"),
|
||||
@ -146,6 +148,7 @@ TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
|
||||
("bert", "TFBertLMHeadModel"),
|
||||
("openai-gpt", "TFOpenAIGPTLMHeadModel"),
|
||||
("gpt2", "TFGPT2LMHeadModel"),
|
||||
("gptj", "TFGPTJForCausalLM"),
|
||||
("transfo-xl", "TFTransfoXLLMHeadModel"),
|
||||
("xlnet", "TFXLNetLMHeadModel"),
|
||||
("xlm", "TFXLMWithLMHeadModel"),
|
||||
@ -239,6 +242,7 @@ TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
|
||||
("tapas", "TFTapasForSequenceClassification"),
|
||||
("funnel", "TFFunnelForSequenceClassification"),
|
||||
("gpt2", "TFGPT2ForSequenceClassification"),
|
||||
("gptj", "TFGPTJForSequenceClassification"),
|
||||
("mpnet", "TFMPNetForSequenceClassification"),
|
||||
("openai-gpt", "TFOpenAIGPTForSequenceClassification"),
|
||||
("transfo-xl", "TFTransfoXLForSequenceClassification"),
|
||||
@ -267,6 +271,7 @@ TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
|
||||
("xlm", "TFXLMForQuestionAnsweringSimple"),
|
||||
("electra", "TFElectraForQuestionAnswering"),
|
||||
("funnel", "TFFunnelForQuestionAnswering"),
|
||||
("gptj", "TFGPTJForQuestionAnswering"),
|
||||
("mpnet", "TFMPNetForQuestionAnswering"),
|
||||
]
|
||||
)
|
||||
|
@ -17,7 +17,7 @@
|
||||
# limitations under the License.
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import _LazyModule, is_flax_available, is_torch_available
|
||||
from ...utils import _LazyModule, is_flax_available, is_tf_available, is_torch_available
|
||||
|
||||
|
||||
_import_structure = {
|
||||
@ -34,6 +34,15 @@ if is_torch_available():
|
||||
"GPTJPreTrainedModel",
|
||||
]
|
||||
|
||||
if is_tf_available():
|
||||
_import_structure["modeling_tf_gptj"] = [
|
||||
"TFGPTJForCausalLM",
|
||||
"TFGPTJForQuestionAnswering",
|
||||
"TFGPTJForSequenceClassification",
|
||||
"TFGPTJModel",
|
||||
"TFGPTJPreTrainedModel",
|
||||
]
|
||||
|
||||
if is_flax_available():
|
||||
_import_structure["modeling_flax_gptj"] = [
|
||||
"FlaxGPTJForCausalLM",
|
||||
@ -55,6 +64,15 @@ if TYPE_CHECKING:
|
||||
GPTJPreTrainedModel,
|
||||
)
|
||||
|
||||
if is_tf_available():
|
||||
from .modeling_tf_gptj import (
|
||||
TFGPTJForCausalLM,
|
||||
TFGPTJForQuestionAnswering,
|
||||
TFGPTJForSequenceClassification,
|
||||
TFGPTJModel,
|
||||
TFGPTJPreTrainedModel,
|
||||
)
|
||||
|
||||
if is_flax_available():
|
||||
from .modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
|
||||
|
||||
|
1156
src/transformers/models/gptj/modeling_tf_gptj.py
Normal file
1156
src/transformers/models/gptj/modeling_tf_gptj.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -1157,6 +1157,41 @@ class TFGPT2PreTrainedModel(metaclass=DummyObject):
|
||||
requires_backends(self, ["tf"])
|
||||
|
||||
|
||||
class TFGPTJForCausalLM(metaclass=DummyObject):
|
||||
_backends = ["tf"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["tf"])
|
||||
|
||||
|
||||
class TFGPTJForQuestionAnswering(metaclass=DummyObject):
|
||||
_backends = ["tf"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["tf"])
|
||||
|
||||
|
||||
class TFGPTJForSequenceClassification(metaclass=DummyObject):
|
||||
_backends = ["tf"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["tf"])
|
||||
|
||||
|
||||
class TFGPTJModel(metaclass=DummyObject):
|
||||
_backends = ["tf"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["tf"])
|
||||
|
||||
|
||||
class TFGPTJPreTrainedModel(metaclass=DummyObject):
|
||||
_backends = ["tf"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["tf"])
|
||||
|
||||
|
||||
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
||||
|
||||
|
||||
|
490
tests/gptj/test_modeling_tf_gptj.py
Normal file
490
tests/gptj/test_modeling_tf_gptj.py
Normal file
@ -0,0 +1,490 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import datetime
|
||||
import unittest
|
||||
|
||||
from transformers import AutoTokenizer, GPTJConfig, is_tf_available
|
||||
from transformers.testing_utils import require_tf, slow, tooslow
|
||||
|
||||
from ..test_configuration_common import ConfigTester
|
||||
from ..test_modeling_tf_common import TFModelTesterMixin, ids_tensor
|
||||
from ..utils.test_modeling_tf_core import TFCoreModelTesterMixin
|
||||
|
||||
|
||||
if is_tf_available():
|
||||
import tensorflow as tf
|
||||
|
||||
from transformers.models.gptj.modeling_tf_gptj import (
|
||||
TFGPTJForCausalLM,
|
||||
TFGPTJForQuestionAnswering,
|
||||
TFGPTJForSequenceClassification,
|
||||
TFGPTJModel,
|
||||
shape_list,
|
||||
)
|
||||
|
||||
|
||||
class TFGPTJModelTester:
|
||||
def __init__(self, parent):
|
||||
self.parent = parent
|
||||
self.batch_size = 13
|
||||
self.seq_length = 7
|
||||
self.is_training = True
|
||||
self.use_token_type_ids = True
|
||||
self.use_input_mask = True
|
||||
self.use_labels = True
|
||||
self.use_mc_token_ids = True
|
||||
self.vocab_size = 99
|
||||
self.hidden_size = 32
|
||||
self.num_hidden_layers = 5
|
||||
self.num_attention_heads = 4
|
||||
self.intermediate_size = 37
|
||||
self.hidden_act = "gelu"
|
||||
self.hidden_dropout_prob = 0.1
|
||||
self.attention_probs_dropout_prob = 0.1
|
||||
self.max_position_embeddings = 512
|
||||
self.type_vocab_size = 16
|
||||
self.type_sequence_label_size = 2
|
||||
self.initializer_range = 0.02
|
||||
self.num_labels = 3
|
||||
self.num_choices = 4
|
||||
self.scope = None
|
||||
self.bos_token_id = self.vocab_size - 1
|
||||
self.eos_token_id = self.vocab_size - 1
|
||||
self.pad_token_id = self.vocab_size - 1
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||||
|
||||
mc_token_ids = None
|
||||
if self.use_mc_token_ids:
|
||||
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
|
||||
|
||||
sequence_labels = None
|
||||
token_labels = None
|
||||
choice_labels = None
|
||||
if self.use_labels:
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||||
|
||||
config = GPTJConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
n_embd=self.hidden_size,
|
||||
n_layer=self.num_hidden_layers,
|
||||
n_head=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
hidden_act=self.hidden_act,
|
||||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
n_positions=self.max_position_embeddings,
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range,
|
||||
bos_token_id=self.bos_token_id,
|
||||
eos_token_id=self.eos_token_id,
|
||||
pad_token_id=self.pad_token_id,
|
||||
return_dict=True,
|
||||
)
|
||||
|
||||
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
|
||||
|
||||
return (
|
||||
config,
|
||||
input_ids,
|
||||
input_mask,
|
||||
head_mask,
|
||||
token_type_ids,
|
||||
mc_token_ids,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
)
|
||||
|
||||
def create_and_check_gptj_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||||
model = TFGPTJModel(config=config)
|
||||
inputs = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": input_mask,
|
||||
"token_type_ids": token_type_ids,
|
||||
}
|
||||
result = model(inputs)
|
||||
|
||||
inputs = [input_ids, None, input_mask] # None is the input for 'past'
|
||||
result = model(inputs)
|
||||
|
||||
result = model(input_ids)
|
||||
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_gptj_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||||
model = TFGPTJModel(config=config)
|
||||
|
||||
# first forward pass
|
||||
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
|
||||
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
|
||||
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)
|
||||
|
||||
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
|
||||
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
|
||||
|
||||
output, past = outputs.to_tuple()
|
||||
|
||||
# create hypothetical next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||||
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
|
||||
|
||||
# append to next input_ids and token_type_ids
|
||||
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
||||
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
|
||||
|
||||
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
|
||||
output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
|
||||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
|
||||
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
|
||||
|
||||
# test that outputs are equal for slice
|
||||
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
|
||||
|
||||
def create_and_check_gptj_model_attention_mask_past(
|
||||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
||||
):
|
||||
model = TFGPTJModel(config=config)
|
||||
|
||||
# create attention mask
|
||||
half_seq_length = self.seq_length // 2
|
||||
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
|
||||
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
|
||||
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
|
||||
|
||||
# first forward pass
|
||||
output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
|
||||
|
||||
# create hypothetical next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||||
|
||||
# change a random masked slice from input_ids
|
||||
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
|
||||
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
|
||||
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
|
||||
condition = tf.transpose(
|
||||
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
|
||||
)
|
||||
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
|
||||
|
||||
# append to next input_ids and attn_mask
|
||||
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
||||
attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)
|
||||
|
||||
# get two different outputs
|
||||
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
|
||||
output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
|
||||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
|
||||
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
|
||||
|
||||
# test that outputs are equal for slice
|
||||
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)
|
||||
|
||||
def create_and_check_gptj_model_past_large_inputs(
|
||||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
||||
):
|
||||
model = TFGPTJModel(config=config)
|
||||
|
||||
input_ids = input_ids[:1, :]
|
||||
input_mask = input_mask[:1, :]
|
||||
token_type_ids = token_type_ids[:1, :]
|
||||
self.batch_size = 1
|
||||
|
||||
# first forward pass
|
||||
outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True)
|
||||
|
||||
output, past = outputs.to_tuple()
|
||||
|
||||
# create hypothetical next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
|
||||
next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size)
|
||||
|
||||
# append to next input_ids and token_type_ids
|
||||
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
|
||||
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
|
||||
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
|
||||
)["last_hidden_state"]
|
||||
output_from_past = model(
|
||||
next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past
|
||||
)["last_hidden_state"]
|
||||
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx]
|
||||
|
||||
# test that outputs are equal for slice
|
||||
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
|
||||
|
||||
def create_and_check_gptj_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||||
model = TFGPTJForCausalLM(config=config)
|
||||
inputs = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": input_mask,
|
||||
"token_type_ids": token_type_ids,
|
||||
}
|
||||
result = model(inputs)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
||||
(
|
||||
config,
|
||||
input_ids,
|
||||
input_mask,
|
||||
head_mask,
|
||||
token_type_ids,
|
||||
mc_token_ids,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
) = config_and_inputs
|
||||
|
||||
inputs_dict = {
|
||||
"input_ids": input_ids,
|
||||
"token_type_ids": token_type_ids,
|
||||
"attention_mask": input_mask,
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_tf
|
||||
class TFGPTJModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, unittest.TestCase):
|
||||
|
||||
all_model_classes = (
|
||||
(TFGPTJForCausalLM, TFGPTJForSequenceClassification, TFGPTJForQuestionAnswering, TFGPTJModel)
|
||||
if is_tf_available()
|
||||
else ()
|
||||
)
|
||||
|
||||
all_generative_model_classes = (TFGPTJForCausalLM,) if is_tf_available() else ()
|
||||
test_onnx = False
|
||||
test_pruning = False
|
||||
test_missing_keys = False
|
||||
test_head_masking = False
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = TFGPTJModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=GPTJConfig, n_embd=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
def test_gptj_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gptj_model(*config_and_inputs)
|
||||
|
||||
def test_gptj_model_past(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gptj_model_past(*config_and_inputs)
|
||||
|
||||
def test_gptj_model_att_mask_past(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gptj_model_attention_mask_past(*config_and_inputs)
|
||||
|
||||
def test_gptj_model_past_large_inputs(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gptj_model_past_large_inputs(*config_and_inputs)
|
||||
|
||||
def test_gptj_lm_head_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_gptj_lm_head_model(*config_and_inputs)
|
||||
|
||||
def test_model_common_attributes(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config)
|
||||
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
|
||||
|
||||
if model_class in self.all_generative_model_classes:
|
||||
x = model.get_output_embeddings()
|
||||
assert isinstance(x, tf.keras.layers.Layer)
|
||||
name = model.get_bias()
|
||||
assert name is None
|
||||
else:
|
||||
x = model.get_output_embeddings()
|
||||
assert x is None
|
||||
name = model.get_bias()
|
||||
assert name is None
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
model = TFGPTJModel.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.")
|
||||
def test_resize_token_embeddings(self):
|
||||
super().test_resize_token_embeddings()
|
||||
|
||||
|
||||
@require_tf
|
||||
class TFGPTJModelLanguageGenerationTest(unittest.TestCase):
|
||||
@tooslow
|
||||
def test_lm_generate_gptj(self):
|
||||
# Marked as @tooslow due to GPU OOM
|
||||
model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True)
|
||||
input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32) # The dog
|
||||
# fmt: off
|
||||
# The dog is a man's best friend. It is a loyal companion, and it is a friend
|
||||
expected_output_ids = [464, 3290, 318, 257, 582, 338, 1266, 1545, 13, 632, 318, 257, 9112, 15185, 11, 290, 340, 318, 257, 1545]
|
||||
# fmt: on
|
||||
output_ids = model.generate(input_ids, do_sample=False)
|
||||
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
|
||||
|
||||
@tooslow
|
||||
def test_gptj_sample(self):
|
||||
# Marked as @tooslow due to GPU OOM (issue #13676)
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
|
||||
model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True)
|
||||
|
||||
tf.random.set_seed(0)
|
||||
tokenized = tokenizer("Today is a nice day and", return_tensors="tf", return_token_type_ids=True)
|
||||
input_ids, token_type_ids = tokenized.input_ids, tokenized.token_type_ids
|
||||
output_ids = model.generate(input_ids, do_sample=True)
|
||||
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
||||
|
||||
output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5)
|
||||
output_seq_tt = model.generate(
|
||||
input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5
|
||||
)
|
||||
output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
|
||||
output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True)
|
||||
|
||||
EXPECTED_OUTPUT_STR = "Today is a nice day and I am taking an hour to sit in the hammock and just enjoy"
|
||||
|
||||
self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
|
||||
self.assertTrue(
|
||||
all([output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs))])
|
||||
) # token_type_ids should change output
|
||||
|
||||
@slow
|
||||
def test_gptj_sample_max_time(self):
|
||||
tokenizer = AutoTokenizer.from_pretrained("anton-l/gpt-j-tiny-random")
|
||||
model = TFGPTJForCausalLM.from_pretrained("anton-l/gpt-j-tiny-random", from_pt=True)
|
||||
|
||||
input_ids = tokenizer("Today is a nice day and", return_tensors="tf", return_token_type_ids=True).input_ids
|
||||
|
||||
MAX_TIME = 0.5
|
||||
|
||||
start = datetime.datetime.now()
|
||||
model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
|
||||
duration = datetime.datetime.now() - start
|
||||
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
|
||||
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||||
|
||||
start = datetime.datetime.now()
|
||||
model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
|
||||
duration = datetime.datetime.now() - start
|
||||
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
|
||||
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||||
|
||||
start = datetime.datetime.now()
|
||||
model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
|
||||
duration = datetime.datetime.now() - start
|
||||
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
|
||||
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||||
|
||||
start = datetime.datetime.now()
|
||||
model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
|
||||
duration = datetime.datetime.now() - start
|
||||
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
|
||||
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||||
|
||||
start = datetime.datetime.now()
|
||||
model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
|
||||
duration = datetime.datetime.now() - start
|
||||
self.assertGreater(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||||
|
||||
@tooslow
|
||||
def test_batch_generation(self):
|
||||
# Marked as @tooslow due to GPU OOM
|
||||
model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
|
||||
|
||||
tokenizer.padding_side = "left"
|
||||
|
||||
# Define PAD Token = EOS Token = 50256
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
model.config.pad_token_id = model.config.eos_token_id
|
||||
|
||||
# use different length sentences to test batching
|
||||
sentences = [
|
||||
"Hello, my dog is a little",
|
||||
"Today, I",
|
||||
]
|
||||
|
||||
inputs = tokenizer(sentences, return_tensors="tf", padding=True)
|
||||
input_ids = inputs["input_ids"]
|
||||
token_type_ids = tf.concat(
|
||||
[
|
||||
tf.zeros((input_ids.shape[0], input_ids.shape[1] - 1), dtype=tf.int64),
|
||||
500 * tf.ones((input_ids.shape[0], 1), dtype=tf.int64),
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"])
|
||||
outputs_tt = model.generate(
|
||||
input_ids=input_ids,
|
||||
attention_mask=inputs["attention_mask"],
|
||||
token_type_ids=token_type_ids,
|
||||
)
|
||||
|
||||
inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids
|
||||
output_non_padded = model.generate(input_ids=inputs_non_padded)
|
||||
|
||||
num_paddings = (
|
||||
shape_list(inputs_non_padded)[-1] - tf.reduce_sum(tf.cast(inputs["attention_mask"][-1], tf.int64)).numpy()
|
||||
)
|
||||
inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids
|
||||
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
|
||||
|
||||
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
|
||||
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
|
||||
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
|
||||
|
||||
expected_output_sentence = [
|
||||
"Hello, my dog is a little over a year old and has been diagnosed with a heart murmur",
|
||||
"Today, I’m going to share with you a few of my favorite",
|
||||
]
|
||||
self.assertListEqual(expected_output_sentence, batch_out_sentence)
|
||||
self.assertTrue(batch_out_sentence_tt != batch_out_sentence) # token_type_ids should change output
|
||||
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
|
Loading…
Reference in New Issue
Block a user