* Make training args fully immutable
* Working tests, PyTorch
* In test_trainer
* during testing
* Use proper dataclass way
* Fix test
* Another one
* Fix tf
* Lingering slow
* Exception
* Clean
* make run_generation more generic for other devices
* use Accelerate to support any device type it supports.
* make style
* fix error usage of accelerator.prepare_model
* use `PartialState` to make sure everything is running on the right device
---------
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
* Add text classification example
* set the problem type and finetuning task
* ruff reformated
* fix bug for unseting label_to_id for regression
* update README.md
* fixed finetuning task
* update comment
* check if label exists in feature before removing
* add useful logging
* Fix TypeError: Object of type int64 is not JSON serializable
* Convert numpy.float64 and numpy.int64 to float and int for json serialization
* Black reformatted examples/pytorch/token-classification/run_ner_no_trainer.py
* * make style
* Add mms ctc fine tuning
* make style
* More fixes that are needed
* make fix-copies
* make draft for README
* add new file
* move to new file
* make style
* make style
* add quick test
* make style
* make style
* convert numpy array to list before writing to json
per_category_iou and per_category_accuracy are ndarray in the eval_metrics
* code reformatted with make style
* Add run_mim_no_trainer.py draft from #20412
Add parse_args method and copy over other dependencies
Add Method call for sending telemetry
Initialize Accelerator
Make one log on every process
Set seed and Handle repository creation
Initialize dataset and Set validation split
Create Config
Adapt Config
Update Config
Create Feature Extractor
Create model
Set column names
Create transforms
Create mask generator
Create method to preprocess images
Shuffle datasets if needed and set transforms
Create Dataloaders
Add optimizer
Add learning rate scheduler
Prepare everything with our accelerator
Tie weights for TPU training
Recalculate training steps and training epochs
Set accelerator checkpointing steps
Initialize trackers and store configuration
Set total batch size
Fix typo: mlm -> mim
Log info at the start of training
Load in the weights and states from previous save
update the progress_bar if load from checkpoint
Define train loop
Add evaluation loop to training
Add to parse_args method
Push repo to hub
Save accelerator state
End training and save model and feature extractor
Remove unused imports
Fix trailing whitespace
* Update code based on comments, Rename feature_extractor to image_processor
* Fix linting
* Add argument for learning rate
* Add argument for setting number of training epochs
* Remove incorrect logger argument
* Convert max_train_steps to int for tqdm
---------
Co-authored-by: Saad Mahmud <shuvro.mahmud79@gmail.com>
* Update run_speech_recognition_ctc.py
Make sure all processes wait until data is saved before loading the processor from the output_dit
* Make sure all processes wait until data is saved before loading the processor from the output_dit
* Update run_speech_recognition_ctc.py
* Update run_speech_recognition_seq2seq.py
* add low_cpu_mem_usage option in run_clm.py example which will benefit LLM loading
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update all the example and README under language-modeling
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Override the decoding parameters of Seq2SeqTrainer
* Fix quality
* Fix max_length parameter
* Fix quality
* Remove redundant parameter max_length
* Separate the preprocess of train and validation to use different max_target_length
* Result of black 23.1
* Update target to Python 3.7
* Switch flake8 to ruff
* Configure isort
* Configure isort
* Apply isort with line limit
* Put the right black version
* adapt black in check copies
* Fix copies
[NumPy] Remove references to deprecated NumPy type aliases.
This change replaces references to a number of deprecated NumPy type aliases (np.bool, np.int, np.float, np.complex, np.object, np.str) with their recommended replacement (bool, int, float, complex, object, str).
NumPy 1.24 drops the deprecated aliases, so we must remove uses before updating NumPy.
Co-authored-by: Peter Hawkins <phawkins@google.com>
Co-authored-by: Peter Hawkins <phawkins@google.com>
* [run_clm example] add torch_dtype option for model load.
for BLOOM 175B model. peak memory will reduce about 350G for inference. the weight of BLOOM in model hub is bfloat16
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* add other type in option
* fix style
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* merge conflicts
* bos and eos in datacollator
* (temp) hardcode removal of attention mask
* freeze encoder
* actually freeze encoder
* set max length / num beams according to gen kwargs
* (temp) fix tests
* don't pop attn mask
* override return attention mask config from Hub
* Hub configs updated 🤗
* final fixes
* update type annotations
* backward comp
* add: the contrastive search for generaton_utils
* add: testing scripts for contrastive search under examples/text-generation
* update the quality of codes
* revise the docstring; make the generation_contrastive_search.py scripts;
* revise the examples/pytorch/text-generation/run_generation_contrastive_search.py to the auto-APIs format
* revise the necessary documents
* fix: revise the docstring of generation_contrastive_search.py
* Fix the code indentation
* fix: revise the nits and examples in contrastive_search docstring.
* fix the copyright
* delete generation_contrastive_search.py
* revise the logic in contrastive_search
* update the intergration test and the docstring
* run the tests over
* add the slow decorate to the contrastive_search intergrate test
* add more test
* do the style, quality, consistency checks
* fixed typo for SQuAD
* Fixed the preprocess_validation_function function for the labels to reflect the remaining truncated instances
* Rolled back the trainer_seq2seq_qa.py for UnboundLocalError: local variable 'metrics' referenced before assignment
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* NeptuneCallback improvements
* After review suggestions and deduplication of initial run
* Added volatile checkpoints support due to missing post-rebase commit
* Update README per review comments
- Remove list formatting
- Correct Neptune docs link
Co-authored-by: Sabine <sabine.nyholm@neptune.ai>
* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)
* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)
* Update run_translation_no_trainer.py
found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint
* fixs `no_decay` and `resume_step` issue
1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`
* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script
* make fixup changes
* PR comments
* changed input to Acceletor based on PR comment, ran make fixup
* Added comment explaining the sync_gradients statement
* Fixed lr scheduler max steps
* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper
* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper
* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script
* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py
* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script
* Delete valohai.yaml
* NLP => ML
* typo
* website supports https
* datasets
* 60k + modalities
* unrelated link fixing for accelerate
* Ok those links were actually broken
* Fix link
* Make `AutoTokenizer` auto-link
* wording tweak
* add at least one non-nlp task
* Add logits_processor parameter, used by `generate`, to `Seq2SeqTrainer` methods `evaluate` and `predict`
* Add all generate parameters to `Seq2SeqTrainer`, and also to `QuestionAnsweringSeq2SeqTrainer` which overrides it
* Remove `self._num_beams` from trainer classes
* - Run fixup
- Fix "Constraint" not exposed
- Fix synced_gpus to actually read from param
* Use kwargs
* Copy kwargs before making changes to it
* Fix style issues unused imports
* Add examples telemetry
* Alternative approach
* Add to all other examples
* Add to templates as well
* Put framework separately
* Same for TensorFlow
* Fix length in no_trainer examples
* Add setup and teardown
* Use new accelerator config generator to automatically make tests able to run based on environment
- Add --ignore_mismatched_sizes argument to classification examples
- Expand the error message when loading a model whose head dimensions are different from expected dimensions
1. Fixes evaluation errors popping up when you train/eval on squad v2 (one was newly encountered and one that was previously reported Running SQuAD 1.0 sample command raises IndexError #15401 but not completely fixed).
2. Removes boolean arguments that don't use store_true. Please, don't use these: *ANY non-empty string is being converted to True in this case and this clearly is not the desired behavior (and it creates a LOT of confusion).
3. All no-trainer test scripts are now saving metric values in the same way (with the right prefix eval_), which is consistent with the trainer-based versions.
4. Adds forgotten model.eval() in the no-trainer versions. This improved some results, but not everything (see the discussion in the end). Please, see the F1 scores and the discussion below.
* Add first draft
* Improve script and README
* Improve README
* Apply suggestions from code review
* Improve script, add link to resulting model
* Add corresponding test
* Adjust learning rate
* Add first draft
* Improve README and run fixup
* Make script aligned with other scripts, improve README
* Improve script and add test
* Remove print statement
* Apply suggestions from code review
* Add num_labels to make test pass
* Improve README
* Add first draft from previous PR
* First draft
* Improve README and remove num_labels
* Make script more aligned with other scripts
* Improve README and apply suggestion from code review
* Change tracking to store_true
* Remove step param and use it in the log dictionary directly
* use vars(args) when passing args to init_trackers
* Include tracking tests since tensorboard is already a dep
* Fixed some bugs involving saving during epochs
* Added tests mimicking the existing examples tests
* Added in json exporting to all `no_trainer` examples for consistency
* Split file_utils in several submodules
* Fixes
* Add back more objects
* More fixes
* Who exactly decided to import that from there?
* Second suggestion to code with code review
* Revert wront move
* Fix imports
* Adapt all imports
* Adapt all imports everywhere
* Revert this import, will fix in a separate commit
* Updates the default branch from master to main
* Links from `master` to `main`
* Typo
* Update examples/flax/README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>