mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Add token
arugment in example scripts (#25172)
* fix * fix * fix * fix * fix * fix * fix --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
parent
c6a8768dab
commit
149cb0cce2
@ -22,6 +22,7 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
@ -182,15 +183,21 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -389,6 +396,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_image_captioning", model_args, data_args, framework="flax")
|
||||
@ -448,7 +461,7 @@ def main():
|
||||
cache_dir=model_args.cache_dir,
|
||||
keep_in_memory=False,
|
||||
data_dir=data_args.data_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -465,7 +478,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -475,18 +488,18 @@ def main():
|
||||
model_args.model_name_or_path,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer.pad_token = tokenizer.convert_ids_to_tokens(model.config.pad_token_id)
|
||||
|
||||
|
@ -26,6 +26,7 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
@ -168,15 +169,21 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -463,6 +470,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_bart_dlm", model_args, data_args, framework="flax")
|
||||
@ -517,7 +530,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if "validation" not in datasets.keys():
|
||||
@ -526,14 +539,14 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -548,7 +561,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if "validation" not in datasets.keys():
|
||||
@ -557,14 +570,14 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -576,14 +589,14 @@ def main():
|
||||
model_args.tokenizer_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
@ -596,13 +609,13 @@ def main():
|
||||
model_args.config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
vocab_size=len(tokenizer),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
config = BartConfig.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config = CONFIG_MAPPING[model_args.model_type]()
|
||||
@ -707,7 +720,7 @@ def main():
|
||||
config=config,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config.vocab_size = len(tokenizer)
|
||||
|
@ -27,6 +27,7 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
@ -169,15 +170,21 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -334,6 +341,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clm", model_args, data_args, framework="flax")
|
||||
@ -397,7 +410,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
keep_in_memory=False,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if "validation" not in dataset.keys():
|
||||
@ -406,14 +419,14 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
dataset["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -431,7 +444,7 @@ def main():
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
**dataset_args,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if "validation" not in dataset.keys():
|
||||
@ -441,7 +454,7 @@ def main():
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
**dataset_args,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
dataset["train"] = load_dataset(
|
||||
extension,
|
||||
@ -449,7 +462,7 @@ def main():
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
**dataset_args,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -463,13 +476,13 @@ def main():
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config = CONFIG_MAPPING[model_args.model_type]()
|
||||
@ -480,14 +493,14 @@ def main():
|
||||
model_args.tokenizer_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
@ -501,7 +514,7 @@ def main():
|
||||
config=config,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
model = FlaxAutoModelForCausalLM.from_config(
|
||||
|
@ -26,6 +26,7 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
@ -174,15 +175,21 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -377,6 +384,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mlm", model_args, data_args, framework="flax")
|
||||
@ -434,7 +447,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if "validation" not in datasets.keys():
|
||||
@ -443,14 +456,14 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -465,7 +478,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if "validation" not in datasets.keys():
|
||||
@ -474,14 +487,14 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -495,13 +508,13 @@ def main():
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config = CONFIG_MAPPING[model_args.model_type]()
|
||||
@ -512,14 +525,14 @@ def main():
|
||||
model_args.tokenizer_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
@ -638,7 +651,7 @@ def main():
|
||||
config=config,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
model = FlaxAutoModelForMaskedLM.from_config(
|
||||
|
@ -25,6 +25,7 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
|
||||
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
|
||||
@ -168,15 +169,21 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -504,6 +511,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_t5_mlm", model_args, data_args, framework="flax")
|
||||
@ -558,7 +571,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if "validation" not in datasets.keys():
|
||||
@ -567,14 +580,14 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -589,7 +602,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if "validation" not in datasets.keys():
|
||||
@ -598,14 +611,14 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -617,14 +630,14 @@ def main():
|
||||
model_args.tokenizer_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
@ -637,13 +650,13 @@ def main():
|
||||
model_args.config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
vocab_size=len(tokenizer),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
config = T5Config.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config = CONFIG_MAPPING[model_args.model_type]()
|
||||
@ -738,7 +751,7 @@ def main():
|
||||
config=config,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config.vocab_size = len(tokenizer)
|
||||
|
@ -25,6 +25,7 @@ import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
@ -155,15 +156,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
dtype: Optional[str] = field(
|
||||
default="float32",
|
||||
metadata={
|
||||
@ -438,6 +445,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_qa", model_args, data_args, framework="flax")
|
||||
@ -487,7 +500,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Loading the dataset from local csv or json file.
|
||||
@ -507,7 +520,7 @@ def main():
|
||||
data_files=data_files,
|
||||
field="data",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -520,14 +533,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=True,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# endregion
|
||||
|
||||
@ -874,7 +887,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
)
|
||||
|
@ -24,6 +24,7 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
@ -188,15 +189,21 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -417,6 +424,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_summarization", model_args, data_args, framework="flax")
|
||||
@ -475,7 +488,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
keep_in_memory=False,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -492,7 +505,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -503,13 +516,13 @@ def main():
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config = CONFIG_MAPPING[model_args.model_type]()
|
||||
@ -520,14 +533,14 @@ def main():
|
||||
model_args.tokenizer_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
@ -541,7 +554,7 @@ def main():
|
||||
config=config,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
model = FlaxAutoModelForSeq2SeqLM.from_config(
|
||||
|
@ -21,6 +21,7 @@ import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Optional, Tuple
|
||||
@ -101,15 +102,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -321,6 +328,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_glue", model_args, data_args, framework="flax")
|
||||
@ -368,7 +381,7 @@ def main():
|
||||
raw_datasets = load_dataset(
|
||||
"glue",
|
||||
data_args.task_name,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Loading the dataset from local csv or json file.
|
||||
@ -381,7 +394,7 @@ def main():
|
||||
raw_datasets = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -411,17 +424,17 @@ def main():
|
||||
model_args.model_name_or_path,
|
||||
num_labels=num_labels,
|
||||
finetuning_task=data_args.task_name,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
use_fast=not model_args.use_slow_tokenizer,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = FlaxAutoModelForSequenceClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
config=config,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# Preprocessing the datasets
|
||||
|
@ -21,6 +21,7 @@ import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
@ -149,15 +150,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -377,6 +384,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_ner", model_args, data_args, framework="flax")
|
||||
@ -422,7 +435,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Loading the dataset from local csv or json file.
|
||||
@ -436,7 +449,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -490,7 +503,7 @@ def main():
|
||||
finetuning_task=data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
|
||||
if config.model_type in {"gpt2", "roberta"}:
|
||||
@ -498,7 +511,7 @@ def main():
|
||||
tokenizer_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
add_prefix_space=True,
|
||||
)
|
||||
else:
|
||||
@ -506,14 +519,14 @@ def main():
|
||||
tokenizer_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = FlaxAutoModelForTokenClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# Preprocessing the datasets
|
||||
|
@ -24,6 +24,7 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
@ -159,15 +160,21 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -257,6 +264,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_image_classification", model_args, data_args, framework="flax")
|
||||
@ -338,7 +351,7 @@ def main():
|
||||
num_labels=len(train_dataset.classes),
|
||||
image_size=data_args.image_size,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif model_args.model_name_or_path:
|
||||
config = AutoConfig.from_pretrained(
|
||||
@ -346,7 +359,7 @@ def main():
|
||||
num_labels=len(train_dataset.classes),
|
||||
image_size=data_args.image_size,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config = CONFIG_MAPPING[model_args.model_type]()
|
||||
@ -358,7 +371,7 @@ def main():
|
||||
config=config,
|
||||
seed=training_args.seed,
|
||||
dtype=getattr(jnp, model_args.dtype),
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
model = FlaxAutoModelForImageClassification.from_config(
|
||||
|
@ -152,15 +152,21 @@ class ModelArguments:
|
||||
attention_mask: bool = field(
|
||||
default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
freeze_feature_extractor: Optional[bool] = field(
|
||||
default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
||||
)
|
||||
@ -198,6 +204,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_audio_classification", model_args, data_args)
|
||||
@ -250,13 +262,13 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=data_args.train_split_name,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
raw_datasets["eval"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=data_args.eval_split_name,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
||||
@ -280,7 +292,7 @@ def main():
|
||||
return_attention_mask=model_args.attention_mask,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# `datasets` takes care of automatically loading and resampling the audio,
|
||||
@ -340,7 +352,7 @@ def main():
|
||||
finetuning_task="audio-classification",
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForAudioClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -348,7 +360,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||
)
|
||||
|
||||
|
@ -26,6 +26,7 @@ Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask)
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -86,15 +87,21 @@ class ModelArguments:
|
||||
default=True,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
freeze_vision_model: bool = field(
|
||||
default=False, metadata={"help": "Whether to freeze the vision model parameters or not."}
|
||||
)
|
||||
@ -235,6 +242,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clip", model_args, data_args)
|
||||
@ -294,7 +307,7 @@ def main():
|
||||
cache_dir=model_args.cache_dir,
|
||||
keep_in_memory=False,
|
||||
data_dir=data_args.data_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -311,7 +324,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -336,14 +349,14 @@ def main():
|
||||
model_args.image_processor_name or model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
model = AutoModel.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
config = model.config
|
||||
|
||||
|
@ -16,6 +16,7 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -142,15 +143,21 @@ class ModelArguments:
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
ignore_mismatched_sizes: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
||||
@ -176,6 +183,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_image_classification", model_args, data_args)
|
||||
@ -229,7 +242,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
task="image-classification",
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -276,7 +289,7 @@ def main():
|
||||
finetuning_task="image-classification",
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -284,14 +297,14 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||
)
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
model_args.image_processor_name or model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# Define torchvision transforms to be applied to each image.
|
||||
|
@ -16,6 +16,7 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -133,15 +134,21 @@ class ModelArguments:
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
mask_ratio: float = field(
|
||||
default=0.75, metadata={"help": "The ratio of the number of masked tokens in the input sequence."}
|
||||
)
|
||||
@ -175,6 +182,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mae", model_args, data_args)
|
||||
@ -224,7 +237,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
data_files=data_args.data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# If we don't have a validation split, split off a percentage of train as validation.
|
||||
@ -242,7 +255,7 @@ def main():
|
||||
config_kwargs = {
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
"token": model_args.token,
|
||||
}
|
||||
if model_args.config_name:
|
||||
config = ViTMAEConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
||||
@ -280,7 +293,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
logger.info("Training new model from scratch")
|
||||
|
@ -16,6 +16,7 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -153,15 +154,21 @@ class ModelArguments:
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
image_size: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
@ -239,6 +246,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mim", model_args, data_args)
|
||||
@ -288,7 +301,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
data_files=data_args.data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# If we don't have a validation split, split off a percentage of train as validation.
|
||||
@ -305,7 +318,7 @@ def main():
|
||||
config_kwargs = {
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
"token": model_args.token,
|
||||
}
|
||||
if model_args.config_name_or_path:
|
||||
config = AutoConfig.from_pretrained(model_args.config_name_or_path, **config_kwargs)
|
||||
@ -357,7 +370,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
logger.info("Training new model from scratch")
|
||||
|
@ -25,6 +25,7 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from typing import Optional
|
||||
@ -111,15 +112,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
torch_dtype: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
@ -238,6 +245,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clm", model_args, data_args)
|
||||
@ -300,7 +313,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
)
|
||||
if "validation" not in raw_datasets.keys():
|
||||
@ -309,7 +322,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
@ -317,7 +330,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
)
|
||||
else:
|
||||
@ -339,7 +352,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
||||
@ -349,7 +362,7 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
@ -357,7 +370,7 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
|
||||
@ -373,7 +386,7 @@ def main():
|
||||
config_kwargs = {
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
"token": model_args.token,
|
||||
}
|
||||
if model_args.config_name:
|
||||
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
||||
@ -391,7 +404,7 @@ def main():
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"use_fast": model_args.use_fast_tokenizer,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
"token": model_args.token,
|
||||
}
|
||||
if model_args.tokenizer_name:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
||||
@ -415,7 +428,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
torch_dtype=torch_dtype,
|
||||
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
|
||||
)
|
||||
|
@ -25,6 +25,7 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from typing import Optional
|
||||
@ -107,15 +108,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
low_cpu_mem_usage: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -238,6 +245,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mlm", model_args, data_args)
|
||||
@ -301,7 +314,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
)
|
||||
if "validation" not in raw_datasets.keys():
|
||||
@ -310,7 +323,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
@ -318,7 +331,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
streaming=data_args.streaming,
|
||||
)
|
||||
else:
|
||||
@ -335,7 +348,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
||||
@ -345,14 +358,14 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
@ -366,7 +379,7 @@ def main():
|
||||
config_kwargs = {
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
"token": model_args.token,
|
||||
}
|
||||
if model_args.config_name:
|
||||
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
||||
@ -384,7 +397,7 @@ def main():
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"use_fast": model_args.use_fast_tokenizer,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
"token": model_args.token,
|
||||
}
|
||||
if model_args.tokenizer_name:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
||||
@ -403,7 +416,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
|
||||
)
|
||||
else:
|
||||
|
@ -22,6 +22,7 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from typing import Optional
|
||||
@ -95,15 +96,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
low_cpu_mem_usage: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -229,6 +236,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_plm", model_args, data_args)
|
||||
@ -291,7 +304,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
if "validation" not in raw_datasets.keys():
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
@ -299,14 +312,14 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -325,14 +338,14 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
@ -346,7 +359,7 @@ def main():
|
||||
config_kwargs = {
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
"token": model_args.token,
|
||||
}
|
||||
if model_args.config_name:
|
||||
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
||||
@ -364,7 +377,7 @@ def main():
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"use_fast": model_args.use_fast_tokenizer,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
"token": model_args.token,
|
||||
}
|
||||
if model_args.tokenizer_name:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
||||
@ -383,7 +396,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
|
||||
)
|
||||
else:
|
||||
|
@ -21,6 +21,7 @@ Fine-tuning the library models for multiple choice.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from typing import Optional, Union
|
||||
@ -79,15 +80,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -225,6 +232,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_swag", model_args, data_args)
|
||||
@ -292,7 +305,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Downloading and loading the swag dataset from the hub.
|
||||
@ -300,7 +313,7 @@ def main():
|
||||
"swag",
|
||||
"regular",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -314,14 +327,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForMultipleChoice.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -329,7 +342,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# When using your own dataset or a different dataset from swag, you will probably need to change this.
|
||||
|
@ -21,6 +21,7 @@ Fine-tuning the library models for question answering using a slightly adapted v
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -79,15 +80,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -227,6 +234,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_qa", model_args, data_args)
|
||||
@ -289,7 +302,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -308,7 +321,7 @@ def main():
|
||||
data_files=data_files,
|
||||
field="data",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -322,14 +335,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=True,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForQuestionAnswering.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -337,7 +350,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# Tokenizer check: this script requires a fast tokenizer.
|
||||
|
@ -21,6 +21,7 @@ Fine-tuning XLNet for question answering with beam search using a slightly adapt
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -78,15 +79,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -226,6 +233,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_qa_beam_search", model_args, data_args)
|
||||
@ -288,7 +301,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -306,7 +319,7 @@ def main():
|
||||
data_files=data_files,
|
||||
field="data",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -320,13 +333,13 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = XLNetTokenizerFast.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = XLNetForQuestionAnswering.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -334,7 +347,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# Preprocessing the datasets.
|
||||
|
@ -21,6 +21,7 @@ Fine-tuning the library's seq2seq models for question answering using the 🤗 S
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
@ -80,15 +81,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -273,6 +280,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_seq2seq_qa", model_args, data_args)
|
||||
@ -335,7 +348,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -353,7 +366,7 @@ def main():
|
||||
data_files=data_files,
|
||||
field="data",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -367,14 +380,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -382,7 +395,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
|
@ -18,6 +18,7 @@ import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -241,15 +242,21 @@ class ModelArguments:
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
@ -265,6 +272,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_semantic_segmentation", model_args, data_args)
|
||||
@ -379,7 +392,7 @@ def main():
|
||||
id2label=id2label,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForSemanticSegmentation.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -387,13 +400,13 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
model_args.image_processor_name or model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# Define torchvision transforms to be applied to each image + target.
|
||||
|
@ -229,15 +229,21 @@ class DataTrainingArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"If :obj:`True`, will use the token generated when running"
|
||||
":obj:`huggingface-cli login` as HTTP bearer authorization for remote files."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
unk_token: str = field(
|
||||
default="[UNK]",
|
||||
metadata={"help": "The unk token for the tokenizer"},
|
||||
@ -379,6 +385,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if data_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if data_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
data_args.token = data_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_speech_recognition_ctc", model_args, data_args)
|
||||
@ -427,7 +439,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=data_args.train_split_name,
|
||||
use_auth_token=data_args.use_auth_token,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
||||
@ -452,7 +464,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=data_args.eval_split_name,
|
||||
use_auth_token=data_args.use_auth_token,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
if data_args.max_eval_samples is not None:
|
||||
@ -490,7 +502,9 @@ def main():
|
||||
# the tokenizer
|
||||
# load config
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
# 4. Next, if no tokenizer file is defined,
|
||||
@ -546,11 +560,13 @@ def main():
|
||||
# load feature_extractor and tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
tokenizer_name_or_path,
|
||||
use_auth_token=data_args.use_auth_token,
|
||||
token=data_args.token,
|
||||
**tokenizer_kwargs,
|
||||
)
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
# adapt config
|
||||
@ -578,7 +594,7 @@ def main():
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
config=config,
|
||||
use_auth_token=data_args.use_auth_token,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
# freeze encoder
|
||||
|
@ -232,15 +232,21 @@ class DataTrainingArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"If :obj:`True`, will use the token generated when running"
|
||||
":obj:`huggingface-cli login` as HTTP bearer authorization for remote files."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
unk_token: str = field(
|
||||
default="[UNK]",
|
||||
metadata={"help": "The unk token for the tokenizer"},
|
||||
@ -375,6 +381,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if data_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if data_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
data_args.token = data_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_speech_recognition_ctc_adapter", model_args, data_args)
|
||||
@ -423,7 +435,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=data_args.train_split_name,
|
||||
use_auth_token=data_args.use_auth_token,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
||||
@ -448,7 +460,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=data_args.eval_split_name,
|
||||
use_auth_token=data_args.use_auth_token,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
if data_args.max_eval_samples is not None:
|
||||
@ -486,7 +498,9 @@ def main():
|
||||
# the tokenizer
|
||||
# load config
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
# 4. Next, if no tokenizer file is defined,
|
||||
@ -500,7 +514,10 @@ def main():
|
||||
vocab_dict = {}
|
||||
if tokenizer_name_or_path is not None:
|
||||
# load vocabulary of other adapter languages so that new language can be appended
|
||||
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_auth_token=data_args.use_auth_token)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
tokenizer_name_or_path,
|
||||
token=data_args.token,
|
||||
)
|
||||
vocab_dict = tokenizer.vocab.copy()
|
||||
if tokenizer.target_lang is None:
|
||||
raise ValueError("Make sure to load a multi-lingual tokenizer with a set target language.")
|
||||
@ -566,11 +583,13 @@ def main():
|
||||
# load feature_extractor and tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
tokenizer_name_or_path,
|
||||
use_auth_token=data_args.use_auth_token,
|
||||
token=data_args.token,
|
||||
**tokenizer_kwargs,
|
||||
)
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=data_args.token,
|
||||
)
|
||||
|
||||
# adapt config
|
||||
@ -595,7 +614,7 @@ def main():
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
config=config,
|
||||
use_auth_token=data_args.use_auth_token,
|
||||
token=data_args.token,
|
||||
ignore_mismatched_sizes=True,
|
||||
)
|
||||
|
||||
|
@ -22,6 +22,7 @@ Fine-tuning the library models for sequence to sequence speech recognition.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
@ -85,15 +86,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
freeze_feature_encoder: bool = field(
|
||||
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
||||
)
|
||||
@ -278,6 +285,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_speech_recognition_seq2seq", model_args, data_args)
|
||||
@ -336,7 +349,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=data_args.train_split_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if training_args.do_eval:
|
||||
@ -345,7 +358,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=data_args.eval_split_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
|
||||
@ -370,7 +383,7 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
|
||||
@ -383,21 +396,21 @@ def main():
|
||||
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if model.config.decoder_start_token_id is None:
|
||||
|
@ -21,6 +21,7 @@ Fine-tuning the library models for sequence to sequence.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -99,15 +100,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
resize_position_embeddings: Optional[bool] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
@ -312,6 +319,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_summarization", model_args, data_args)
|
||||
@ -386,7 +399,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -403,7 +416,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -417,14 +430,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -432,7 +445,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
|
@ -20,6 +20,7 @@ import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
|
||||
@ -227,15 +228,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
ignore_mismatched_sizes: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
||||
@ -268,6 +275,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_classification", model_args, data_args)
|
||||
@ -327,7 +340,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# Try print some info about the dataset
|
||||
logger.info(f"Dataset loaded: {raw_datasets}")
|
||||
@ -358,7 +371,7 @@ def main():
|
||||
"csv",
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Loading a dataset from local json files
|
||||
@ -366,7 +379,7 @@ def main():
|
||||
"json",
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# See more about loading any type of standard or custom dataset at
|
||||
@ -468,7 +481,7 @@ def main():
|
||||
finetuning_task="text-classification",
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
if is_regression:
|
||||
@ -486,7 +499,7 @@ def main():
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -494,7 +507,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||
)
|
||||
|
||||
|
@ -20,6 +20,7 @@ import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -188,15 +189,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
ignore_mismatched_sizes: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
||||
@ -216,6 +223,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_glue", model_args, data_args)
|
||||
@ -281,7 +294,7 @@ def main():
|
||||
"glue",
|
||||
data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
elif data_args.dataset_name is not None:
|
||||
# Downloading and loading a dataset from the hub.
|
||||
@ -289,7 +302,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Loading a dataset from your local files.
|
||||
@ -318,7 +331,7 @@ def main():
|
||||
"csv",
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Loading a dataset from local json files
|
||||
@ -326,7 +339,7 @@ def main():
|
||||
"json",
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -361,14 +374,14 @@ def main():
|
||||
finetuning_task=data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -376,7 +389,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||
)
|
||||
|
||||
|
@ -21,6 +21,7 @@ import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -152,15 +153,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
ignore_mismatched_sizes: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
||||
@ -175,6 +182,12 @@ def main():
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_xnli", model_args)
|
||||
@ -232,7 +245,7 @@ def main():
|
||||
model_args.language,
|
||||
split="train",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
train_dataset = load_dataset(
|
||||
@ -240,7 +253,7 @@ def main():
|
||||
model_args.train_language,
|
||||
split="train",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
label_list = train_dataset.features["label"].names
|
||||
|
||||
@ -250,7 +263,7 @@ def main():
|
||||
model_args.language,
|
||||
split="validation",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
label_list = eval_dataset.features["label"].names
|
||||
|
||||
@ -260,7 +273,7 @@ def main():
|
||||
model_args.language,
|
||||
split="test",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
label_list = predict_dataset.features["label"].names
|
||||
|
||||
@ -278,7 +291,7 @@ def main():
|
||||
finetuning_task="xnli",
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
@ -286,7 +299,7 @@ def main():
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -294,7 +307,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||
)
|
||||
|
||||
|
@ -22,6 +22,7 @@ Fine-tuning the library models for token classification.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -79,15 +80,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
ignore_mismatched_sizes: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
||||
@ -217,6 +224,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_ner", model_args, data_args)
|
||||
@ -279,7 +292,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -348,7 +361,7 @@ def main():
|
||||
finetuning_task=data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
|
||||
@ -358,7 +371,7 @@ def main():
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=True,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
add_prefix_space=True,
|
||||
)
|
||||
else:
|
||||
@ -367,7 +380,7 @@ def main():
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=True,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
model = AutoModelForTokenClassification.from_pretrained(
|
||||
@ -376,7 +389,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||
)
|
||||
|
||||
|
@ -21,6 +21,7 @@ Fine-tuning the library models for sequence to sequence.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -89,15 +90,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -261,6 +268,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_translation", model_args, data_args)
|
||||
@ -335,7 +348,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -352,7 +365,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -366,14 +379,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
@ -381,7 +394,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
|
@ -26,6 +26,7 @@ Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask)
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -92,15 +93,21 @@ class ModelArguments:
|
||||
default=True,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
freeze_vision_model: bool = field(
|
||||
default=False, metadata={"help": "Whether to freeze the vision model parameters or not."}
|
||||
)
|
||||
@ -245,6 +252,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
if model_args.model_name_or_path is not None:
|
||||
if model_args.vision_model_name_or_path is not None or model_args.text_model_name_or_path is not None:
|
||||
raise ValueError(
|
||||
@ -315,7 +328,7 @@ def main():
|
||||
cache_dir=model_args.cache_dir,
|
||||
keep_in_memory=False,
|
||||
data_dir=data_args.data_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -332,7 +345,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -362,14 +375,14 @@ def main():
|
||||
model_args.image_processor_name or model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
with training_args.strategy.scope():
|
||||
model = TFAutoModel.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Load image_processor, in this script we only use this to get the mean and std for normalization.
|
||||
@ -377,14 +390,14 @@ def main():
|
||||
model_args.image_processor_name or model_args.vision_model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
with training_args.strategy.scope():
|
||||
model = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
|
||||
vision_model_name_or_path=model_args.vision_model_name_or_path,
|
||||
text_model_name_or_path=model_args.text_model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
config = model.config
|
||||
|
||||
|
@ -23,6 +23,7 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -157,15 +158,21 @@ class ModelArguments:
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
ignore_mismatched_sizes: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
||||
@ -226,6 +233,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
if not (training_args.do_train or training_args.do_eval or training_args.do_predict):
|
||||
exit("Must specify at least one of --do_train, --do_eval or --do_predict!")
|
||||
|
||||
@ -275,7 +288,7 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
task="image-classification",
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -309,13 +322,13 @@ def main():
|
||||
finetuning_task="image-classification",
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
model_args.image_processor_name or model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# If we don't have a validation split, split off a percentage of train as validation.
|
||||
@ -435,7 +448,7 @@ def main():
|
||||
from_pt=bool(".bin" in model_path),
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||
)
|
||||
num_replicas = training_args.strategy.num_replicas_in_sync
|
||||
|
@ -30,6 +30,7 @@ import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
@ -112,15 +113,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
|
||||
@ -220,6 +227,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clm", model_args, data_args, framework="tensorflow")
|
||||
@ -287,7 +300,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
if "validation" not in raw_datasets.keys():
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
@ -295,14 +308,14 @@ def main():
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -323,7 +336,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
||||
@ -333,7 +346,7 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
@ -341,7 +354,7 @@ def main():
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
**dataset_args,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
|
@ -28,6 +28,7 @@ import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
@ -110,15 +111,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
|
||||
@ -226,6 +233,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mlm", model_args, data_args, framework="tensorflow")
|
||||
@ -296,20 +309,20 @@ def main():
|
||||
raw_datasets = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
if "validation" not in raw_datasets.keys():
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -323,7 +336,7 @@ def main():
|
||||
raw_datasets = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
|
@ -22,6 +22,7 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
@ -146,15 +147,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -239,6 +246,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_swag", model_args, data_args, framework="tensorflow")
|
||||
@ -301,7 +314,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Downloading and loading the swag dataset from the hub.
|
||||
@ -309,7 +322,7 @@ def main():
|
||||
"swag",
|
||||
"regular",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -335,14 +348,14 @@ def main():
|
||||
config_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# endregion
|
||||
|
||||
@ -428,7 +441,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
num_replicas = training_args.strategy.num_replicas_in_sync
|
||||
|
@ -22,6 +22,7 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
@ -77,15 +78,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -245,6 +252,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_qa", model_args, data_args, framework="tensorflow")
|
||||
@ -304,7 +317,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -323,7 +336,7 @@ def main():
|
||||
data_files=data_files,
|
||||
field="data",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -338,14 +351,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=True,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# endregion
|
||||
|
||||
@ -625,7 +638,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
if training_args.do_train:
|
||||
training_dataset = model.prepare_tf_dataset(
|
||||
|
@ -22,6 +22,7 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -99,15 +100,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -287,6 +294,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_summarization", model_args, data_args, framework="tensorflow")
|
||||
@ -355,7 +368,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -372,7 +385,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -388,14 +401,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
||||
@ -513,7 +526,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
|
@ -20,6 +20,7 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -164,15 +165,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
# endregion
|
||||
@ -192,6 +199,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_glue", model_args, data_args, framework="tensorflow")
|
||||
@ -242,7 +255,7 @@ def main():
|
||||
"glue",
|
||||
data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
@ -284,14 +297,14 @@ def main():
|
||||
finetuning_task=data_args.task_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# endregion
|
||||
|
||||
@ -374,7 +387,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# endregion
|
||||
|
||||
|
@ -20,6 +20,7 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
@ -170,15 +171,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
# endregion
|
||||
@ -198,6 +205,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_text_classification", model_args, data_args, framework="tensorflow")
|
||||
@ -258,7 +271,7 @@ def main():
|
||||
"csv",
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
# Loading a dataset from local json files
|
||||
@ -301,20 +314,20 @@ def main():
|
||||
num_labels=num_labels,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
config = AutoConfig.from_pretrained(
|
||||
config_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# endregion
|
||||
|
||||
@ -402,7 +415,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# endregion
|
||||
|
||||
|
@ -21,6 +21,7 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -75,15 +76,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -196,6 +203,12 @@ def main():
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_ner", model_args, data_args, framework="tensorflow")
|
||||
@ -228,7 +241,7 @@ def main():
|
||||
raw_datasets = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -240,7 +253,7 @@ def main():
|
||||
raw_datasets = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
@ -22,6 +22,7 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -93,15 +94,21 @@ class ModelArguments:
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
token: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -268,6 +275,12 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_translation", model_args, data_args, framework="tensorflow")
|
||||
@ -322,7 +335,7 @@ def main():
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
@ -336,7 +349,7 @@ def main():
|
||||
extension,
|
||||
data_files=data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading
|
||||
@ -352,14 +365,14 @@ def main():
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
||||
@ -466,7 +479,7 @@ def main():
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
token=True if model_args.use_auth_token else None,
|
||||
token=model_args.token,
|
||||
)
|
||||
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
|
Loading…
Reference in New Issue
Block a user