Fix missing usage of token (#25382)

* add missing tokens

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
Yih-Dar 2023-08-08 16:27:24 +02:00 committed by GitHub
parent 5bd8c011bb
commit 9c7b744795
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 96 additions and 28 deletions

View File

@ -342,11 +342,19 @@ def main():
# 5. Load pretrained model, tokenizer, and image processor
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
raise ValueError(

View File

@ -17,6 +17,7 @@ import argparse
import logging
import math
import os
import warnings
from pathlib import Path
import datasets
@ -186,14 +187,20 @@ def parse_args():
default=None,
help="Name or path of preprocessor config.",
)
parser.add_argument(
"--token",
type=str,
default=None,
help=(
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
),
)
parser.add_argument(
"--use_auth_token",
type=bool,
default=False,
help=(
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
),
default=None,
help="The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`.",
)
parser.add_argument(
"--trust_remote_code",
@ -377,6 +384,12 @@ def collate_fn(examples):
def main():
args = parse_args()
if args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
args.token = args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mim_no_trainer", args)
@ -440,7 +453,7 @@ def main():
args.dataset_config_name,
data_files=args.data_files,
cache_dir=args.cache_dir,
use_auth_token=True if args.use_auth_token else None,
token=args.token,
)
# If we don't have a validation split, split off a percentage of train as validation.
@ -457,7 +470,7 @@ def main():
config_kwargs = {
"cache_dir": args.cache_dir,
"revision": args.model_revision,
"use_auth_token": True if args.use_auth_token else None,
"token": args.token,
"trust_remote_code": args.trust_remote_code,
}
if args.config_name_or_path:
@ -508,13 +521,14 @@ def main():
config=config,
cache_dir=args.cache_dir,
revision=args.model_revision,
token=True if args.use_auth_token else None,
token=args.token,
trust_remote_code=args.trust_remote_code,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForMaskedImageModeling.from_config(
config,
token=args.token,
trust_remote_code=args.trust_remote_code,
)

View File

@ -108,6 +108,16 @@ class ModelArguments:
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
"should only be set to `True` for repositories you trust and in which you have read the code, as it will"
"execute code present on the Hub on your local machine."
)
},
)
freeze_vision_model: bool = field(
default=False, metadata={"help": "Whether to freeze the vision model parameters or not."}
)
@ -353,15 +363,27 @@ def main():
# 5. Load pretrained model, tokenizer, and image processor
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.text_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
model_args.text_model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
raise ValueError(
@ -376,6 +398,7 @@ def main():
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
with training_args.strategy.scope():
model = TFAutoModel.from_pretrained(
@ -383,6 +406,7 @@ def main():
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
# Load image_processor, in this script we only use this to get the mean and std for normalization.
@ -391,6 +415,7 @@ def main():
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
with training_args.strategy.scope():
model = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
@ -398,6 +423,7 @@ def main():
text_model_name_or_path=model_args.text_model_name_or_path,
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
config = model.config

View File

@ -378,11 +378,12 @@ def main():
if model_args.config_name:
config = AutoConfig.from_pretrained(
model_args.config_name,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
@ -390,11 +391,11 @@ def main():
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, trust_remote_code=model_args.trust_remote_code
model_args.tokenizer_name, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
else:
raise ValueError(
@ -499,15 +500,20 @@ def main():
# region Prepare model
if checkpoint is not None:
model = TFAutoModelForCausalLM.from_pretrained(
checkpoint, config=config, trust_remote_code=model_args.trust_remote_code
checkpoint, config=config, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
elif model_args.model_name_or_path:
model = TFAutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, config=config, trust_remote_code=model_args.trust_remote_code
model_args.model_name_or_path,
config=config,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
logger.info("Training new model from scratch")
model = TFAutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
model = TFAutoModelForCausalLM.from_config(
config, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.

View File

@ -358,12 +358,16 @@ def main():
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if checkpoint is not None:
config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=model_args.trust_remote_code)
config = AutoConfig.from_pretrained(
checkpoint, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
elif model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, trust_remote_code=model_args.trust_remote_code)
config = AutoConfig.from_pretrained(
model_args.config_name, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
@ -371,11 +375,11 @@ def main():
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, trust_remote_code=model_args.trust_remote_code
model_args.tokenizer_name, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
else:
raise ValueError(
@ -512,15 +516,20 @@ def main():
# region Prepare model
if checkpoint is not None:
model = TFAutoModelForMaskedLM.from_pretrained(
checkpoint, config=config, trust_remote_code=model_args.trust_remote_code
checkpoint, config=config, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
elif model_args.model_name_or_path:
model = TFAutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, config=config, trust_remote_code=model_args.trust_remote_code
model_args.model_name_or_path,
config=config,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
logger.info("Training new model from scratch")
model = TFAutoModelForMaskedLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
model = TFAutoModelForMaskedLM.from_config(
config, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.

View File

@ -317,12 +317,14 @@ def main():
config = AutoConfig.from_pretrained(
model_args.config_name,
num_labels=num_labels,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
num_labels=num_labels,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
@ -341,12 +343,14 @@ def main():
tokenizer_name_or_path,
use_fast=True,
add_prefix_space=True,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
use_fast=True,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# endregion
@ -419,12 +423,13 @@ def main():
model = TFAutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
config=config,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
logger.info("Training new model from scratch")
model = TFAutoModelForTokenClassification.from_config(
config, trust_remote_code=model_args.trust_remote_code
config, token=model_args.token, trust_remote_code=model_args.trust_remote_code
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch