* Add MLflow integration class
Add integration code for MLflow in integrations.py along with the code
that checks that MLflow is installed.
* Add MLflowCallback import
Add import of MLflowCallback in trainer.py
* Handle model argument
Allow the callback to handle model argument and store model config items as hyperparameters.
* Log parameters to MLflow in batches
MLflow cannot log more than a hundred parameters at once.
Code added to split the parameters into batches of 100 items and log the batches one by one.
* Fix style
* Add docs on MLflow callback
* Fix issue with unfinished runs
The "fluent" api used in MLflow integration allows only one run to be active at any given moment. If the Trainer is disposed off and a new one is created, but the training is not finished, it will refuse to log the results when the next trainer is created.
* Add MLflow integration class
Add integration code for MLflow in integrations.py along with the code
that checks that MLflow is installed.
* Add MLflowCallback import
Add import of MLflowCallback in trainer.py
* Handle model argument
Allow the callback to handle model argument and store model config items as hyperparameters.
* Log parameters to MLflow in batches
MLflow cannot log more than a hundred parameters at once.
Code added to split the parameters into batches of 100 items and log the batches one by one.
* Fix style
* Add docs on MLflow callback
* Fix issue with unfinished runs
The "fluent" api used in MLflow integration allows only one run to be active at any given moment. If the Trainer is disposed off and a new one is created, but the training is not finished, it will refuse to log the results when the next trainer is created.
* Make Seq2Seq Trainer more similar to Trainer
* fix typo
* fix seq2seq trainer
* remove from tests
* remove lock
* remove train files
* delete test files
* correct typo
* check at init
* make sure trainer is not slowed down on TPU
* correct isort
* remove use cache
* fix use cache
* add last use chache = false
* model card German Sentence Embeddings V2
- for German RoBERTa for Sentence Embeddings V2
- marked old as outdated
* small correction
* small improvement in description
* small spelling fix
* spelling fix
* add evaluation results
* spearman explanation
* add number of trials
Updating the run_squad training script to handle the "longformer" `model_type`. The longformer is trained in the same was as RoBERTa, so I've added the "longformer" `model_type` (that's the right hugginface name for the LongFormer model, right?) everywhere there was a "roberta" `model_type` reference. The longformer (like RoBERTa) doesn't use `token_type_ids` (as I understand from looking at the [longformer notebook](https://github.com/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb), which is what gets updated after this change.
This fix might be related to [this issue](https://github.com/huggingface/transformers/issues/7249) with SQuAD training when using run_squad.py
* WIP refactoring pipeline tests - switching to fast tokenizers
* fix dialog pipeline and fill-mask
* refactoring pipeline tests backbone
* make large tests slow
* fix tests (tf Bart inactive for now)
* fix doc...
* clean up for merge
* fixing tests - remove bart from summarization until there is TF
* fix quality and RAG
* Add new translation pipeline tests - fix JAX tests
* only slow for dialog
* Fixing the missing TF-BART imports in modeling_tf_auto
* spin out pipeline tests in separate CI job
* adding pipeline test to CI YAML
* add slow pipeline tests
* speed up tf and pt join test to avoid redoing all the standalone pt and tf tests
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
* Update src/transformers/pipelines.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/pipelines.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update src/transformers/testing_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add require_torch and require_tf in is_pt_tf_cross_test
Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Start simplification
* More progress
* Finished script
* Address comments and update tests instructions
* Wrong test
* Accept files as inputs and fix test
* Update src/transformers/trainer_utils.py
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
* Fix labels and add combined score
* Add special labels
* Update TPU command
* Revert to old label strategy
* Use model labels
* Fix for STT-B
* Styling
* Apply suggestions from code review
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
* Code styling
* Fix review comments
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
* Actually make the "translation", "translation_XX_to_YY" task behave correctly.
Background:
- Currently "translation_cn_to_ar" does not work. (only 3 pairs are
supported)
- Some models, contain in their config the correct values for the (src,
tgt) pair they can translate. It's usually just one pair, and we can
infer it automatically from the `model.config.task_specific_params`. If
it's not defined we can still probably load the TranslationPipeline
nevertheless.
Proposed fix:
- A simplified version of what could become more general which is
a `parametrized` task. "translation" + (src, tgt) in this instance
it what we need in the general case. The way we go about it for now
is simply parsing "translation_XX_to_YY". If cases of parametrized task arise
we should preferably go in something closer to what `datasets` propose
which is having a secondary argument `task_options`? that will be close
to what that task requires.
- Should be backward compatible in all cases for instance
`pipeline(task="translation_en_to_de") should work out of the box.
- Should provide a warning when a specific translation pair has been
selected on behalf of the user using
`model.config.task_specific_params`.
* Update src/transformers/pipelines.py
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
* fix config save
* add test
* add config class variable and another test
* line break
* fix fsmt and typo
* god am I making many errors today :-/
* Update src/transformers/configuration_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Looking at the current community notebooks, it seems that few are targeted for absolute beginners and even fewer are written with TensorFlow. This notebook describes absolutely everything a beginner would need to know, including how to save/load their model and use it for new predictions (this is often omitted in tutorials)
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* slow tests should be slow
* exception note
* style
* integrate LysandreJik's notes with some expansions
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* another slow test
* fix link, and prose
* clarify.
* note from Sam
* typo
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>