mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-30 17:52:35 +06:00
add zero shot pipeline tags & examples (#7983)
* add zero shot pipeline tags * rm default and fix yaml format * rm DS_Store * add bart large default * don't add more typos Co-authored-by: Julien Chaumond <chaumond@gmail.com> * add multiple multilingual examples * improve multilingual examples for single-label Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
parent
06fc3954a1
commit
077c99bb5f
@ -2,4 +2,7 @@
|
||||
license: mit
|
||||
thumbnail: https://huggingface.co/front/thumbnails/facebook.png
|
||||
pipeline_tag: zero-shot-classification
|
||||
widget:
|
||||
- text: "November 3 is weeks away and Biden's lead is only growing."
|
||||
labels: "politics, economics, public health, elections"
|
||||
---
|
||||
|
@ -5,8 +5,7 @@ tags:
|
||||
- pytorch
|
||||
datasets:
|
||||
- yahoo-answers
|
||||
widget:
|
||||
- text: "Who are you voting for in 2020? <sep> This text is about politics."
|
||||
pipeline_tag: zero-shot-classification
|
||||
---
|
||||
|
||||
# bart-lage-mnli-yahoo-answers
|
||||
|
@ -5,11 +5,17 @@ tags:
|
||||
- pytorch
|
||||
- tensorflow
|
||||
datasets:
|
||||
- mnli
|
||||
- multi_nli
|
||||
- xnli
|
||||
widget:
|
||||
- text: "За кого вы голосуете в 2020 году? <sep> This text is about politique."
|
||||
license: mit
|
||||
pipeline_tag: zero-shot-classification
|
||||
widget:
|
||||
- text: "За кого вы голосуете в 2020 году?"
|
||||
labels: "politique étrangère, Europe, élections, affaires, politique"
|
||||
- text: "لمن تصوت في 2020؟"
|
||||
labels: "السياسة الخارجية, أوروبا, الانتخابات, الأعمال, السياسة"
|
||||
- text: "2020'de kime oy vereceksiniz?"
|
||||
labels: "dış politika, Avrupa, seçimler, ticaret, siyaset"
|
||||
---
|
||||
|
||||
# xlm-roberta-large-xnli
|
||||
@ -115,4 +121,3 @@ This model was pre-trained on set of 100 languages, as described in
|
||||
MNLI train set and the XNLI validation and test sets. Finally, it was trained for one additional epoch on only XNLI
|
||||
data where the translations for the premise and hypothesis are shuffled such that the premise and hypothesis for
|
||||
each example come from the same original English example but the premise and hypothesis are of different languages.
|
||||
|
||||
|
@ -4,6 +4,7 @@ datasets:
|
||||
tags:
|
||||
- distilbart
|
||||
- distilbart-mnli
|
||||
pipeline_tag: zero-shot-classification
|
||||
---
|
||||
|
||||
# DistilBart-MNLI
|
||||
|
@ -4,6 +4,7 @@ datasets:
|
||||
tags:
|
||||
- distilbart
|
||||
- distilbart-mnli
|
||||
pipeline_tag: zero-shot-classification
|
||||
---
|
||||
|
||||
# DistilBart-MNLI
|
||||
|
@ -4,6 +4,7 @@ datasets:
|
||||
tags:
|
||||
- distilbart
|
||||
- distilbart-mnli
|
||||
pipeline_tag: zero-shot-classification
|
||||
---
|
||||
|
||||
# DistilBart-MNLI
|
||||
|
@ -4,6 +4,7 @@ datasets:
|
||||
tags:
|
||||
- distilbart
|
||||
- distilbart-mnli
|
||||
pipeline_tag: zero-shot-classification
|
||||
---
|
||||
|
||||
# DistilBart-MNLI
|
||||
|
Loading…
Reference in New Issue
Block a user