mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
[fsmt test] basic config test with online model + super tiny model (#7860)
* basic config test with online model * typo * style * better test
This commit is contained in:
parent
3479787edc
commit
64b4d25cf3
74
scripts/fsmt/fsmt-make-super-tiny-model.py
Executable file
74
scripts/fsmt/fsmt-make-super-tiny-model.py
Executable file
@ -0,0 +1,74 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# This script creates a super tiny model that is useful inside tests, when we just want to test that
|
||||
# the machinery works, without needing to the check the quality of the outcomes.
|
||||
#
|
||||
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
|
||||
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
|
||||
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
|
||||
# The latter is done by `fsmt-make-super-tiny-model.py`.
|
||||
#
|
||||
# It will be used then as "stas/tiny-wmt19-en-ru"
|
||||
|
||||
from pathlib import Path
|
||||
import json
|
||||
import tempfile
|
||||
|
||||
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
|
||||
from transformers.tokenization_fsmt import VOCAB_FILES_NAMES
|
||||
|
||||
mname_tiny = "tiny-wmt19-en-ru"
|
||||
|
||||
# Build
|
||||
|
||||
# borrowed from a test
|
||||
vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ]
|
||||
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
||||
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
build_dir = Path(tmpdirname)
|
||||
src_vocab_file = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
|
||||
tgt_vocab_file = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
|
||||
merges_file = build_dir / VOCAB_FILES_NAMES["merges_file"]
|
||||
with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
|
||||
with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
|
||||
with open(merges_file, "w") as fp : fp.write("\n".join(merges))
|
||||
|
||||
tokenizer = FSMTTokenizer(
|
||||
langs=["en", "ru"],
|
||||
src_vocab_size = len(vocab),
|
||||
tgt_vocab_size = len(vocab),
|
||||
src_vocab_file=src_vocab_file,
|
||||
tgt_vocab_file=tgt_vocab_file,
|
||||
merges_file=merges_file,
|
||||
)
|
||||
|
||||
config = FSMTConfig(
|
||||
langs=['ru', 'en'],
|
||||
src_vocab_size=1000, tgt_vocab_size=1000,
|
||||
d_model=4,
|
||||
encoder_layers=1, decoder_layers=1,
|
||||
encoder_ffn_dim=4, decoder_ffn_dim=4,
|
||||
encoder_attention_heads=1, decoder_attention_heads=1,
|
||||
)
|
||||
|
||||
tiny_model = FSMTForConditionalGeneration(config)
|
||||
print(f"num of params {tiny_model.num_parameters()}")
|
||||
|
||||
# Test
|
||||
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"])
|
||||
outputs = tiny_model(**batch, return_dict=True)
|
||||
|
||||
print("test output:", len(outputs.logits[0]))
|
||||
|
||||
# Save
|
||||
tiny_model.half() # makes it smaller
|
||||
tiny_model.save_pretrained(mname_tiny)
|
||||
tokenizer.save_pretrained(mname_tiny)
|
||||
|
||||
print(f"Generated {mname_tiny}")
|
||||
|
||||
# Upload
|
||||
# transformers-cli upload tiny-wmt19-en-ru
|
@ -1,10 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# this script creates a tiny model that is useful inside tests, when we just want to test that the machinery works,
|
||||
# without needing to the check the quality of the outcomes.
|
||||
# it will be used then as "stas/tiny-wmt19-en-de"
|
||||
# This script creates a super tiny model that is useful inside tests, when we just want to test that
|
||||
# the machinery works, without needing to the check the quality of the outcomes.
|
||||
#
|
||||
# This version creates a tiny model through reduction of a normal pre-trained model, but keeping the
|
||||
# full vocab, merges file, and thus also resulting in a larger model due to a large vocab size.
|
||||
# This gives ~3MB in total for all files.
|
||||
#
|
||||
# If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated
|
||||
#
|
||||
#
|
||||
# It will be used then as "stas/tiny-wmt19-en-de"
|
||||
|
||||
# Build
|
||||
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
|
||||
mname = "facebook/wmt19-en-de"
|
||||
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
||||
@ -18,16 +27,20 @@ config.update(dict(
|
||||
|
||||
tiny_model = FSMTForConditionalGeneration(config)
|
||||
print(f"num of params {tiny_model.num_parameters()}")
|
||||
# Test it
|
||||
|
||||
# Test
|
||||
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"])
|
||||
outputs = tiny_model(**batch, return_dict=True)
|
||||
|
||||
print(len(outputs.logits[0]))
|
||||
print("test output:", len(outputs.logits[0]))
|
||||
|
||||
# Save
|
||||
mname_tiny = "tiny-wmt19-en-de"
|
||||
tiny_model.half() # makes it smaller
|
||||
tiny_model.save_pretrained(mname_tiny)
|
||||
tokenizer.save_pretrained(mname_tiny)
|
||||
|
||||
print(f"Generated {mname_tiny}")
|
||||
|
||||
# Upload
|
||||
# transformers-cli upload tiny-wmt19-en-de
|
||||
|
@ -25,6 +25,10 @@ from transformers.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer
|
||||
from .test_tokenization_common import TokenizerTesterMixin
|
||||
|
||||
|
||||
# using a different tiny model than the one used for default params defined in init to ensure proper testing
|
||||
FSMT_TINY2 = "stas/tiny-wmt19-en-ru"
|
||||
|
||||
|
||||
class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
tokenizer_class = FSMTTokenizer
|
||||
|
||||
@ -86,6 +90,15 @@ class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
def tokenizer_en_ru(self):
|
||||
return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru")
|
||||
|
||||
def test_online_tokenizer_config(self):
|
||||
"""this just tests that the online tokenizer files get correctly fetched and
|
||||
loaded via its tokenizer_config.json and it's not slow so it's run by normal CI
|
||||
"""
|
||||
tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2)
|
||||
self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"])
|
||||
self.assertEqual(tokenizer.src_vocab_size, 21)
|
||||
self.assertEqual(tokenizer.tgt_vocab_size, 21)
|
||||
|
||||
def test_full_tokenizer(self):
|
||||
""" Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
|
||||
tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file)
|
||||
|
Loading…
Reference in New Issue
Block a user