* try to stylify using ruff
* might need to remove these changes?
* use ruf format andruff check
* use isinstance instead of type comparision
* use # fmt: skip
* use # fmt: skip
* nits
* soem styling changes
* update ci job
* nits isinstance
* more files update
* nits
* more nits
* small nits
* check and format
* revert wrong changes
* actually use formatter instead of checker
* nits
* well docbuilder is overwriting this commit
* revert notebook changes
* try to nuke docbuilder
* style
* fix feature exrtaction test
* remve `indent-width = 4`
* fixup
* more nits
* update the ruff version that we use
* style
* nuke docbuilder styling
* leve the print for detected changes
* nits
* Remove file I/O
Co-authored-by: charliermarsh
<charlie.r.marsh@gmail.com>
* style
* nits
* revert notebook changes
* Add # fmt skip when possible
* Add # fmt skip when possible
* Fix
* More ` # fmt: skip` usage
* More ` # fmt: skip` usage
* More ` # fmt: skip` usage
* NIts
* more fixes
* fix tapas
* Another way to skip
* Recommended way
* Fix two more fiels
* Remove asynch
Remove asynch
---------
Co-authored-by: charliermarsh <charlie.r.marsh@gmail.com>
`jnp.array` is a function, not a type:
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.array.html
so it never makes sense to use `jnp.array` in a type annotation. Presumably the intent was to write `jnp.ndarray` aka `jax.Array`.
Co-authored-by: Peter Hawkins <phawkins@google.com>
* Result of black 23.1
* Update target to Python 3.7
* Switch flake8 to ruff
* Configure isort
* Configure isort
* Apply isort with line limit
* Put the right black version
* adapt black in check copies
* Fix copies
Currently, tensorflow examples use the `load_metric` function from
Datasets library, commit migrates function call to `load` function
from Evaluate library.
* Add examples telemetry
* Alternative approach
* Add to all other examples
* Add to templates as well
* Put framework separately
* Same for TensorFlow
* Correct Logging of Eval metric to Tensorboard
An empty dictionary ``eval_metrics`` was being logged, is replaced by ``eval_metric`` which is the output dictionary of ``metric.compute()``.
* Remove unused variable
* Split file_utils in several submodules
* Fixes
* Add back more objects
* More fixes
* Who exactly decided to import that from there?
* Second suggestion to code with code review
* Revert wront move
* Fix imports
* Adapt all imports
* Adapt all imports everywhere
* Revert this import, will fix in a separate commit
* add test for glue
* add tests for clm
* fix clm test
* add summrization tests
* more tests
* fix few tests
* add test for t5 mlm
* fix t5 mlm test
* fix tests for multi device
* cleanup
* ci job
* fix metric file name
* make t5 more robust
* Fix weight decay masking in `run_flax_glue.py`
Issues with the previous implementation:
- The `dict` from `traverse_util.flatten_dict` has keys which are tuples of strings, not one long string with the path separated by periods.
- `optax.masked` applies the transformation wherever the mask is True, so the masks are flipped.
- Flax's LayerNorm calls the scale parameter `scale` not `weight`
* Fix formatting with black
* adapt results
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* Remove redundant `nn.log_softmax` in `run_flax_glue.py`
`optax.softmax_cross_entropy` expects unnormalized logits, and so it already calls `nn.log_softmax`, so I believe it is not needed here. `nn.log_softmax` is idempotent so mathematically it shouldn't have made a difference.
* Remove unused 'flax.linen' import