mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
Migrate metrics used in flax examples to Evaluate (#18348)
Currently, tensorflow examples use the `load_metric` function from Datasets library, commit migrates function call to `load` function from Evaluate library.
This commit is contained in:
parent
a2586795e5
commit
da503ea02f
@ -4,4 +4,5 @@ conllu
|
||||
nltk
|
||||
rouge-score
|
||||
seqeval
|
||||
tensorboard
|
||||
tensorboard
|
||||
evaluate >= 0.2.0
|
@ -31,10 +31,11 @@ from typing import Callable, Optional
|
||||
import datasets
|
||||
import nltk # Here to have a nice missing dependency error message early on
|
||||
import numpy as np
|
||||
from datasets import Dataset, load_dataset, load_metric
|
||||
from datasets import Dataset, load_dataset
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
import evaluate
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import optax
|
||||
@ -811,7 +812,7 @@ def main():
|
||||
yield batch
|
||||
|
||||
# Metric
|
||||
metric = load_metric("rouge")
|
||||
metric = evaluate.load("rouge")
|
||||
|
||||
def postprocess_text(preds, labels):
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
@ -32,9 +32,10 @@ from typing import Any, Callable, Dict, Optional, Tuple
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
from datasets import load_dataset, load_metric
|
||||
from datasets import load_dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
import evaluate
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import optax
|
||||
@ -776,7 +777,7 @@ def main():
|
||||
references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
|
||||
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
|
||||
|
||||
metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad")
|
||||
metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad")
|
||||
|
||||
def compute_metrics(p: EvalPrediction):
|
||||
return metric.compute(predictions=p.predictions, references=p.label_ids)
|
||||
|
@ -33,9 +33,10 @@ from typing import Callable, Optional
|
||||
import datasets
|
||||
import nltk # Here to have a nice missing dependency error message early on
|
||||
import numpy as np
|
||||
from datasets import Dataset, load_dataset, load_metric
|
||||
from datasets import Dataset, load_dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
import evaluate
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import optax
|
||||
@ -656,7 +657,7 @@ def main():
|
||||
)
|
||||
|
||||
# Metric
|
||||
metric = load_metric("rouge")
|
||||
metric = evaluate.load("rouge")
|
||||
|
||||
def postprocess_text(preds, labels):
|
||||
preds = [pred.strip() for pred in preds]
|
||||
|
@ -27,9 +27,10 @@ from typing import Any, Callable, Dict, Optional, Tuple
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
from datasets import load_dataset, load_metric
|
||||
from datasets import load_dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
import evaluate
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import optax
|
||||
@ -570,9 +571,9 @@ def main():
|
||||
p_eval_step = jax.pmap(eval_step, axis_name="batch")
|
||||
|
||||
if data_args.task_name is not None:
|
||||
metric = load_metric("glue", data_args.task_name)
|
||||
metric = evaluate.load("glue", data_args.task_name)
|
||||
else:
|
||||
metric = load_metric("accuracy")
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
logger.info(f"===== Starting training ({num_epochs} epochs) =====")
|
||||
train_time = 0
|
||||
|
@ -29,9 +29,10 @@ from typing import Any, Callable, Dict, Optional, Tuple
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
from datasets import ClassLabel, load_dataset, load_metric
|
||||
from datasets import ClassLabel, load_dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
import evaluate
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import optax
|
||||
@ -646,7 +647,7 @@ def main():
|
||||
|
||||
p_eval_step = jax.pmap(eval_step, axis_name="batch")
|
||||
|
||||
metric = load_metric("seqeval")
|
||||
metric = evaluate.load("seqeval")
|
||||
|
||||
def get_labels(y_pred, y_true):
|
||||
# Transform predictions and references tensos to numpy arrays
|
||||
|
Loading…
Reference in New Issue
Block a user