mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* Remove redundant `nn.log_softmax` in `run_flax_glue.py` `optax.softmax_cross_entropy` expects unnormalized logits, and so it already calls `nn.log_softmax`, so I believe it is not needed here. `nn.log_softmax` is idempotent so mathematically it shouldn't have made a difference. * Remove unused 'flax.linen' import
510 lines
20 KiB
Python
Executable File
510 lines
20 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Finetuning a 🤗 Flax Transformers model for sequence classification on GLUE."""
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import random
|
|
import time
|
|
from itertools import chain
|
|
from typing import Any, Callable, Dict, Tuple
|
|
|
|
import datasets
|
|
from datasets import load_dataset, load_metric
|
|
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import optax
|
|
import transformers
|
|
from flax import struct, traverse_util
|
|
from flax.jax_utils import replicate, unreplicate
|
|
from flax.metrics import tensorboard
|
|
from flax.training import train_state
|
|
from flax.training.common_utils import get_metrics, onehot, shard
|
|
from transformers import AutoConfig, AutoTokenizer, FlaxAutoModelForSequenceClassification, PretrainedConfig
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
Array = Any
|
|
Dataset = datasets.arrow_dataset.Dataset
|
|
PRNGKey = Any
|
|
|
|
|
|
task_to_keys = {
|
|
"cola": ("sentence", None),
|
|
"mnli": ("premise", "hypothesis"),
|
|
"mrpc": ("sentence1", "sentence2"),
|
|
"qnli": ("question", "sentence"),
|
|
"qqp": ("question1", "question2"),
|
|
"rte": ("sentence1", "sentence2"),
|
|
"sst2": ("sentence", None),
|
|
"stsb": ("sentence1", "sentence2"),
|
|
"wnli": ("sentence1", "sentence2"),
|
|
}
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
|
|
parser.add_argument(
|
|
"--task_name",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the glue task to train on.",
|
|
choices=list(task_to_keys.keys()),
|
|
)
|
|
parser.add_argument(
|
|
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
|
|
)
|
|
parser.add_argument(
|
|
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
|
|
)
|
|
parser.add_argument(
|
|
"--max_length",
|
|
type=int,
|
|
default=128,
|
|
help=(
|
|
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
|
|
" sequences shorter will be padded."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--model_name_or_path",
|
|
type=str,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
required=True,
|
|
)
|
|
parser.add_argument(
|
|
"--use_slow_tokenizer",
|
|
action="store_true",
|
|
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
|
|
)
|
|
parser.add_argument(
|
|
"--per_device_train_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size (per device) for the training dataloader.",
|
|
)
|
|
parser.add_argument(
|
|
"--per_device_eval_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size (per device) for the evaluation dataloader.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=5e-5,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
|
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
|
|
parser.add_argument("--seed", type=int, default=3, help="A seed for reproducible training.")
|
|
args = parser.parse_args()
|
|
|
|
# Sanity checks
|
|
if args.task_name is None and args.train_file is None and args.validation_file is None:
|
|
raise ValueError("Need either a task name or a training/validation file.")
|
|
else:
|
|
if args.train_file is not None:
|
|
extension = args.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if args.validation_file is not None:
|
|
extension = args.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
return args
|
|
|
|
|
|
def create_train_state(
|
|
model: FlaxAutoModelForSequenceClassification,
|
|
learning_rate_fn: Callable[[int], float],
|
|
is_regression: bool,
|
|
num_labels: int,
|
|
weight_decay: float,
|
|
) -> train_state.TrainState:
|
|
"""Create initial training state."""
|
|
|
|
class TrainState(train_state.TrainState):
|
|
"""Train state with an Optax optimizer.
|
|
|
|
The two functions below differ depending on whether the task is classification
|
|
or regression.
|
|
|
|
Args:
|
|
logits_fn: Applied to last layer to obtain the logits.
|
|
loss_fn: Function to compute the loss.
|
|
"""
|
|
|
|
logits_fn: Callable = struct.field(pytree_node=False)
|
|
loss_fn: Callable = struct.field(pytree_node=False)
|
|
|
|
# Creates a multi-optimizer consisting of two "Adam with weight decay" optimizers.
|
|
def adamw(decay):
|
|
return optax.adamw(learning_rate=learning_rate_fn, b1=0.9, b2=0.999, eps=1e-6, weight_decay=decay)
|
|
|
|
def traverse(fn):
|
|
def mask(data):
|
|
flat = traverse_util.flatten_dict(data)
|
|
return traverse_util.unflatten_dict({k: fn(k, v) for k, v in flat.items()})
|
|
|
|
return mask
|
|
|
|
# We use Optax's "masking" functionality to create a multi-optimizer, one
|
|
# with weight decay and the other without. Note masking means the optimizer
|
|
# will ignore these paths.
|
|
decay_path = lambda p: not any(x in p for x in ["bias", "LayerNorm.weight"]) # noqa: E731
|
|
|
|
tx = optax.chain(
|
|
optax.masked(adamw(0.0), mask=traverse(lambda path, _: decay_path(path))),
|
|
optax.masked(adamw(weight_decay), mask=traverse(lambda path, _: not decay_path(path))),
|
|
)
|
|
|
|
if is_regression:
|
|
|
|
def mse_loss(logits, labels):
|
|
return jnp.mean((logits[..., 0] - labels) ** 2)
|
|
|
|
return TrainState.create(
|
|
apply_fn=model.__call__,
|
|
params=model.params,
|
|
tx=tx,
|
|
logits_fn=lambda logits: logits[..., 0],
|
|
loss_fn=mse_loss,
|
|
)
|
|
else: # Classification.
|
|
|
|
def cross_entropy_loss(logits, labels):
|
|
xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels))
|
|
return jnp.mean(xentropy)
|
|
|
|
return TrainState.create(
|
|
apply_fn=model.__call__,
|
|
params=model.params,
|
|
tx=tx,
|
|
logits_fn=lambda logits: logits.argmax(-1),
|
|
loss_fn=cross_entropy_loss,
|
|
)
|
|
|
|
|
|
def create_learning_rate_fn(
|
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
|
) -> Callable[[int], jnp.array]:
|
|
"""Returns a linear warmup, linear_decay learning rate function."""
|
|
steps_per_epoch = train_ds_size // train_batch_size
|
|
num_train_steps = steps_per_epoch * num_train_epochs
|
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
|
decay_fn = optax.linear_schedule(
|
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
|
)
|
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
|
return schedule_fn
|
|
|
|
|
|
def glue_train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int):
|
|
"""Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices."""
|
|
steps_per_epoch = len(dataset) // batch_size
|
|
perms = jax.random.permutation(rng, len(dataset))
|
|
perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch.
|
|
perms = perms.reshape((steps_per_epoch, batch_size))
|
|
|
|
for perm in perms:
|
|
batch = dataset[perm]
|
|
batch = {k: jnp.array(v) for k, v in batch.items()}
|
|
batch = shard(batch)
|
|
|
|
yield batch
|
|
|
|
|
|
def glue_eval_data_collator(dataset: Dataset, batch_size: int):
|
|
"""Returns batches of size `batch_size` from `eval dataset`, sharded over all local devices."""
|
|
for i in range(len(dataset) // batch_size):
|
|
batch = dataset[i * batch_size : (i + 1) * batch_size]
|
|
batch = {k: jnp.array(v) for k, v in batch.items()}
|
|
batch = shard(batch)
|
|
|
|
yield batch
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
# Setup logging, we only want one process per machine to log things on the screen.
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
|
if jax.process_index() == 0:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
|
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
|
|
|
|
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
|
|
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
|
|
# label if at least two columns are provided.
|
|
|
|
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
|
|
# single column. You can easily tweak this behavior (see below)
|
|
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if args.task_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
raw_datasets = load_dataset("glue", args.task_name)
|
|
else:
|
|
# Loading the dataset from local csv or json file.
|
|
data_files = {}
|
|
if args.train_file is not None:
|
|
data_files["train"] = args.train_file
|
|
if args.validation_file is not None:
|
|
data_files["validation"] = args.validation_file
|
|
extension = (args.train_file if args.train_file is not None else args.valid_file).split(".")[-1]
|
|
raw_datasets = load_dataset(extension, data_files=data_files)
|
|
# See more about loading any type of standard or custom dataset at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
|
|
|
# Labels
|
|
if args.task_name is not None:
|
|
is_regression = args.task_name == "stsb"
|
|
if not is_regression:
|
|
label_list = raw_datasets["train"].features["label"].names
|
|
num_labels = len(label_list)
|
|
else:
|
|
num_labels = 1
|
|
else:
|
|
# Trying to have good defaults here, don't hesitate to tweak to your needs.
|
|
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
|
|
if is_regression:
|
|
num_labels = 1
|
|
else:
|
|
# A useful fast method:
|
|
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
|
|
label_list = raw_datasets["train"].unique("label")
|
|
label_list.sort() # Let's sort it for determinism
|
|
num_labels = len(label_list)
|
|
|
|
# Load pretrained model and tokenizer
|
|
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
|
|
model = FlaxAutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, config=config)
|
|
|
|
# Preprocessing the datasets
|
|
if args.task_name is not None:
|
|
sentence1_key, sentence2_key = task_to_keys[args.task_name]
|
|
else:
|
|
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
|
|
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
|
|
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
|
|
sentence1_key, sentence2_key = "sentence1", "sentence2"
|
|
else:
|
|
if len(non_label_column_names) >= 2:
|
|
sentence1_key, sentence2_key = non_label_column_names[:2]
|
|
else:
|
|
sentence1_key, sentence2_key = non_label_column_names[0], None
|
|
|
|
# Some models have set the order of the labels to use, so let's make sure we do use it.
|
|
label_to_id = None
|
|
if (
|
|
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
|
|
and args.task_name is not None
|
|
and not is_regression
|
|
):
|
|
# Some have all caps in their config, some don't.
|
|
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
|
|
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
|
|
logger.info(
|
|
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
|
|
"Using it!"
|
|
)
|
|
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
|
|
else:
|
|
logger.warning(
|
|
"Your model seems to have been trained with labels, but they don't match the dataset: ",
|
|
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
|
|
"\nIgnoring the model labels as a result.",
|
|
)
|
|
elif args.task_name is None:
|
|
label_to_id = {v: i for i, v in enumerate(label_list)}
|
|
|
|
def preprocess_function(examples):
|
|
# Tokenize the texts
|
|
texts = (
|
|
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
|
|
)
|
|
result = tokenizer(*texts, padding="max_length", max_length=args.max_length, truncation=True)
|
|
|
|
if "label" in examples:
|
|
if label_to_id is not None:
|
|
# Map labels to IDs (not necessary for GLUE tasks)
|
|
result["labels"] = [label_to_id[l] for l in examples["label"]]
|
|
else:
|
|
# In all cases, rename the column to labels because the model will expect that.
|
|
result["labels"] = examples["label"]
|
|
return result
|
|
|
|
processed_datasets = raw_datasets.map(
|
|
preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
|
|
)
|
|
|
|
train_dataset = processed_datasets["train"]
|
|
eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"]
|
|
|
|
# Log a few random samples from the training set:
|
|
for index in random.sample(range(len(train_dataset)), 3):
|
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
|
|
|
# Define a summary writer
|
|
summary_writer = tensorboard.SummaryWriter(args.output_dir)
|
|
summary_writer.hparams(vars(args))
|
|
|
|
def write_metric(train_metrics, eval_metrics, train_time, step):
|
|
summary_writer.scalar("train_time", train_time, step)
|
|
|
|
train_metrics = get_metrics(train_metrics)
|
|
for key, vals in train_metrics.items():
|
|
tag = f"train_{key}"
|
|
for i, val in enumerate(vals):
|
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
|
|
|
for metric_name, value in eval_metrics.items():
|
|
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
|
|
|
num_epochs = int(args.num_train_epochs)
|
|
rng = jax.random.PRNGKey(args.seed)
|
|
dropout_rngs = jax.random.split(rng, jax.local_device_count())
|
|
|
|
train_batch_size = args.per_device_train_batch_size * jax.local_device_count()
|
|
eval_batch_size = args.per_device_eval_batch_size * jax.local_device_count()
|
|
|
|
learning_rate_fn = create_learning_rate_fn(
|
|
len(train_dataset), train_batch_size, args.num_train_epochs, args.num_warmup_steps, args.learning_rate
|
|
)
|
|
|
|
state = create_train_state(
|
|
model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=args.weight_decay
|
|
)
|
|
|
|
# define step functions
|
|
def train_step(
|
|
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
|
|
) -> Tuple[train_state.TrainState, float]:
|
|
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
|
|
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
|
|
targets = batch.pop("labels")
|
|
|
|
def loss_fn(params):
|
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
|
loss = state.loss_fn(logits, targets)
|
|
return loss
|
|
|
|
grad_fn = jax.value_and_grad(loss_fn)
|
|
loss, grad = grad_fn(state.params)
|
|
grad = jax.lax.pmean(grad, "batch")
|
|
new_state = state.apply_gradients(grads=grad)
|
|
metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch")
|
|
return new_state, metrics, new_dropout_rng
|
|
|
|
p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))
|
|
|
|
def eval_step(state, batch):
|
|
logits = state.apply_fn(**batch, params=state.params, train=False)[0]
|
|
return state.logits_fn(logits)
|
|
|
|
p_eval_step = jax.pmap(eval_step, axis_name="batch")
|
|
|
|
if args.task_name is not None:
|
|
metric = load_metric("glue", args.task_name)
|
|
else:
|
|
metric = load_metric("accuracy")
|
|
|
|
logger.info(f"===== Starting training ({num_epochs} epochs) =====")
|
|
train_time = 0
|
|
|
|
# make sure weights are replicated on each device
|
|
state = replicate(state)
|
|
|
|
for epoch in range(1, num_epochs + 1):
|
|
logger.info(f"Epoch {epoch}")
|
|
logger.info(" Training...")
|
|
|
|
train_start = time.time()
|
|
train_metrics = []
|
|
rng, input_rng = jax.random.split(rng)
|
|
|
|
# train
|
|
for batch in glue_train_data_collator(input_rng, train_dataset, train_batch_size):
|
|
state, metrics, dropout_rngs = p_train_step(state, batch, dropout_rngs)
|
|
train_metrics.append(metrics)
|
|
train_time += time.time() - train_start
|
|
logger.info(f" Done! Training metrics: {unreplicate(metrics)}")
|
|
|
|
logger.info(" Evaluating...")
|
|
|
|
# evaluate
|
|
for batch in glue_eval_data_collator(eval_dataset, eval_batch_size):
|
|
labels = batch.pop("labels")
|
|
predictions = p_eval_step(state, batch)
|
|
metric.add_batch(predictions=chain(*predictions), references=chain(*labels))
|
|
|
|
# evaluate also on leftover examples (not divisible by batch_size)
|
|
num_leftover_samples = len(eval_dataset) % eval_batch_size
|
|
|
|
# make sure leftover batch is evaluated on one device
|
|
if num_leftover_samples > 0 and jax.process_index() == 0:
|
|
# take leftover samples
|
|
batch = eval_dataset[-num_leftover_samples:]
|
|
batch = {k: jnp.array(v) for k, v in batch.items()}
|
|
|
|
labels = batch.pop("labels")
|
|
predictions = eval_step(unreplicate(state), batch)
|
|
metric.add_batch(predictions=predictions, references=labels)
|
|
|
|
eval_metric = metric.compute()
|
|
logger.info(f" Done! Eval metrics: {eval_metric}")
|
|
|
|
cur_step = epoch * (len(train_dataset) // train_batch_size)
|
|
write_metric(train_metrics, eval_metric, train_time, cur_step)
|
|
|
|
# save last checkpoint
|
|
if jax.process_index() == 0:
|
|
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
|
model.save_pretrained(args.output_dir, params=params)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|