* Normalize image - cast input images to float32.
This is done if the input image isn't of floating type. Issues can occur when do_rescale=False is set in an image processor. When this happens, the image passed to the call is of type uint8 becuase of the type casting that happens in resize because of the PIL image library. As the mean and std values are cast to match the image dtype, this can cause NaNs and infs to appear in the normalized image, as the floating values being used to divide the image are now set to 0.
The reason the mean and std values are cast is because previously they were set as float32 by default. However, if the input image was of type float16, the normalization would result in the image being upcast to float32 too.
* Add tests
* Remove float32 cast
* only dir not even init
* init
* tokenizer removed and reference of codegen added
* modeling file updated a lot remaining app_rotary_emb
* conversion script done
* conversion script fixed, a lot of factoring done and most tests pass
* added token_clf and extractive_QA_head
* integration tests pass
* flash attn tests pass!
* config done
* more docs in modeling file
* some style fix
* style and others
* doc test error fix
* more doc fix
* some attention fixes
* most fixes
* style and other fixes
* docs fix and config
* doc fix
* some comments
* conversion script updated
* conversion script updated
* Revert "conversion script updated"
This reverts commit e92378c54084ec0747041b113083d1746ecb6c7f.
* final comments
* add Phi to language_modeling.md
* edit phi.md file
* rebase and fix
* removed phi-1.5 example
* changed model_type from 'phi'->'mixformer-sequential'
* small change
* small change
* revert \small change
* changed mixformer-sequential->phi
* small change
* added phi-1.5 example instead of phi-1
* doc test might pass now
* rebase and small change
* added the dropout layer
* more fixes
* modified .md file
* very very small doc change
* fix?
* actual fix
* fixups
* add dataclass to the attention mask converter
* refine testing suite
* make sure there are no overflows
* update the test
* init commit
* attention arch done except rotary emb
* rotary emb done
* text encoder working
* outputs matching
* arch first pass done
* make commands done, tests and docs remaining
* all tests passed, only docs remaining
* docs done
* doc-builder fix
* convert script removed(not relevant)
* minor comments done
* added ckpt conversion script
* tokenizer done
* very minor fix of index.md 2
* mostly make fixup related
* all done except fe and rotary emb
* very small change
* removed unidecode dependency
* style changes
* tokenizer removed require_backends
* added require_inflect to tokenizer tests
* removed VOCAB_FILES in tokenizer test
* inflect dependency removed
* added rotary pos emb cache and simplified the apply method
* style
* little doc change
* more comments
* feature extractor added
* added processor
* auto-regressive config added
* added CLVPConditioningEncoder
* comments done except the test one
* weights added successfull(NOT tested)
* tokenizer fix with numbers
* generate outputs matching
* almost tests passing Integ tests not written
* Integ tests added
* major CUDA error fixed
* docs done
* rebase and multiple fixes
* fixed rebase overwrites
* generate code simplified and tests for AutoRegressive model added
* minor changes
* refectored gpt2 code in clvp file
* weights done and all code refactored
* mostly done except the fast_tokenizer
* doc test fix
* config file's doc fixes
* more config fix
* more comments
* tokenizer comments mostly done
* modeling file mostly refactored and can load modules
* ClvpEncoder tested
* ClvpDecoder, ClvpModel and ClvpForCausalLM tested
* integration and all tests passed
* more fixes
* docs almost done
* ckpt conversion refectored
* style and some failing tests fix
* comments
* temporary output fix but test_assisted_decoding_matches_greedy_search test fails
* majority changes done
* use_cache outputs same now! Along with the asisted_greedy_decoding test fix
* more comments
* more comments
* prepare_inputs_for_generation fixed and _prepare_model_inputs added
* style fix
* clvp.md change
* moved clvpconditionalencoder norms
* add model to new index
* added tokenizer input_ids_with_special_tokens
* small fix
* config mostly done
* added config-tester and changed conversion script
* more comments
* comments
* style fix
* some comments
* tokenizer changed back to prev state
* small commnets
* added output hidden states for the main model
* style fix
* comments
* small change
* revert small change
* .
* Update clvp.md
* Update test_modeling_clvp.py
* :)
* some minor change
* new fixes
* remove to_dict from FE
* add audio_utils usage in the FE of SpeechToText
* clean unecessary parameters of AudioSpectrogramTransformer FE
* add audio_utils usage in AST
* add serialization tests and function to FEs
* make style
* remove use_torchaudio and move to_dict to FE
* test audio_utils usage
* make style and fix import (remove torchaudio dependency import)
* fix torch dependency for jax and tensor tests
* fix typo
* clean tests with suggestions
* add lines to test if is_speech_availble is False
* Use Llama RoPE implementation for Falcon
+ Add copy functionalities
* Use standard cache format for Falcon
* Simplify apply_rotary_pos_emb, copy from Llama
* Remove unnecessary cache conversion test
We don't need to convert any caches anymore!
* Resolve copy complaint
* Fixing m4t.
* Trying to remove comparison ? Odd test failure.
* Adding shared. But why on earth does it hang ????
* Putting back the model weights checks the test is silently failing on
cuda.
* Fix style + unremoved comment.
* Fix Fuyu image scaling bug
It could produce negative padding and hence inference errors for certain
image sizes.
* initial rework commit
* add batching capabilities, refactor image processing
* add functional batching for a list of images and texts
* make args explicit
* Fuyu processing update (#27133)
* Add file headers
* Add file headers
* First pass - preprocess method with standard args
* First pass image processor rework
* Small tweaks
* More args and docstrings
* Tidying iterating over batch
* Tidying up
* Modify to have quick tests (for now)
* Fix up
* BatchFeature
* Passing tests
* Add tests for processor
* Sense check when patchifying
* Add some tests
* FuyuBatchFeature
* Post-process box coordinates
* Update to `size` in processor
* Remove unused and duplicate constants
* Store unpadded dims after resize
* Fix up
* Return FuyuBatchFeature
* Get unpadded sizes after resize
* Update exception
* Fix return
* Convert input `<box>` coordinates to model format.
* Post-process point coords, support multiple boxes/points in a single
sequence
* Replace constants
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Preprocess List[List[image]]
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update to Amy's latest state.
* post-processing returns a list of tensors
* Fix error when target_sizes is None
Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Review comments
* Update src/transformers/models/fuyu/image_processing_fuyu.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Fix up
* Fix up
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-72-126.ec2.internal>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>
* Fix conflicts in fuyu_follow_up_image_processing (#27228)
fixing conflicts and updating on main
* Revert "Fix conflicts in fuyu_follow_up_image_processing" (#27232)
Revert "Fix conflicts in fuyu_follow_up_image_processing (#27228)"
This reverts commit acce10b6c6.
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-72-126.ec2.internal>
* add whisper fa2
* correct
* change all
* correct
* correct
* fix more
* fix more
* fix more
* fix more
* fix more
* fix more
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix more
* fix more
* fix more
* fix more
* fix more
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add type annotations to TFConvNextDropPath
* Use tf.debugging.assert_equal for TFConvNextEmbeddings shape check
* Add TensorFlow implementation of ConvNeXTV2
* check_docstrings: add TFConvNextV2Model to exclusions
TFConvNextV2Model and TFConvNextV2ForImageClassification have docstrings
which are equivalent to their PyTorch cousins, but a parsing issue prevents them
from passing the test.
Adding exclusions for these two classes as discussed in #25558.
* Safetensors serialization by default
* First pass on the tests
* Second pass on the tests
* Third pass on the tests
* Fix TF weight loading from TF-format safetensors
* Specific encoder-decoder fixes for weight crossloading
* Add VisionEncoderDecoder fixes for TF too
* Change filename test for pt-to-tf
* One missing fix for TFVisionEncoderDecoder
* Fix the other crossload test
* Support for flax + updated tests
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Sanchit's comments
* Sanchit's comments 2
* Nico's comments
* Fix tests
* cleanup
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* stronger GC tests
* better tests and skip failing tests
* break down into 3 sub-tests
* break down into 3 sub-tests
* refactor a bit
* more refactor
* fix
* last nit
* credits contrib and suggestions
* credits contrib and suggestions
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add early stopping logits processor
* black formmated
* indent
* follow method signature
* actual logic
* check for None
* address comments on docstrings and method signature
* add unit test under `LogitsProcessorTest` wip
* unit test passing
* black formatted
* condition per sample
* add to BarkModelIntegrationTests
* wip BarkSemanticModelTest
* rename and add to kwargs handling
* not add to BarkSemanticModelTest
* correct logic and assert last outputs tokens different in test
* doc-builder style
* read from kwargs as well
* assert len of with less than that of without
* ruff
* add back seed and test case
* add original impl default suggestion
* doc-builder
* rename and use softmax
* switch back to LogitsProcessor and update docs wording
* camelCase and spelling and saving compute
* assert strictly less than
* assert less than
* expand test_generate_semantic_early_stop instead
* Support runs/
* Upload runs folder as part of push to hub
* Add a test
* Add to test deps
* Update with proposed solution from Slack
* Ensure that repo gets deleted in tests
* Add a default decoder_attention_mask for EncoderDecoderModel during training
Since we are already creating the default decoder_input_ids from the labels, we should also
create a default decoder_attention_mask to go with it.
* Fix test constant that relied on manual_seed()
The test was changed to use a decoder_attention_mask that ignores padding instead (which is
the default one created by BERT when attention_mask is None).
* Create the decoder_attention_mask using decoder_input_ids instead of labels
* Fix formatting in test
* adds agnostic decorators and availability fns
* renaming decorators and fixing imports
* updating some representative example tests
bloom, opt, and reformer for now
* wip device agnostic functions
* lru cache to device checking functions
* adds `TRANSFORMERS_TEST_DEVICE_SPEC`
if present, imports the target file and updates device to function
mappings
* comments `TRANSFORMERS_TEST_DEVICE_SPEC` code
* extra checks on device name
* `make style; make quality`
* updates default functions for agnostic calls
* applies suggestions from review
* adds `is_torch_available` guard
* Add spec file to docs, rename function dispatch names to backend_*
* add backend import to docs example for spec file
* change instances of to
* Move register backend to before device check as per @statelesshz changes
* make style
* make opt test require fp16 to run
---------
Co-authored-by: arsalanu <arsalanu@graphcore.ai>
Co-authored-by: arsalanu <hzji210@gmail.com>
* Register ModelOutput as supported torch pytree nodes
* Test ModelOutput as supported torch pytree nodes
* Update type hints for pytree unflatten functions
* first raw commit
* still POC
* tentative convert script
* almost working speech encoder conversion scripts
* intermediate code for encoder/decoders
* add modeling code
* first version of speech encoder
* make style
* add new adapter layer architecture
* add adapter block
* add first tentative config
* add working speech encoder conversion
* base model convert works now
* make style
* remove unnecessary classes
* remove unecessary functions
* add modeling code speech encoder
* rework logics
* forward pass of sub components work
* add modeling codes
* some config modifs and modeling code modifs
* save WIP
* new edits
* same output speech encoder
* correct attention mask
* correct attention mask
* fix generation
* new generation logics
* erase comments
* make style
* fix typo
* add some descriptions
* new state
* clean imports
* add tests
* make style
* make beam search and num_return_sequences>1 works
* correct edge case issue
* correct SeamlessM4TConformerSamePadLayer copied from
* replace ACT2FN relu by nn.relu
* remove unecessary return variable
* move back a class
* change name conformer_attention_mask ->conv_attention_mask
* better nit code
* add some Copied from statements
* small nits
* small nit in dict.get
* rename t2u model -> conditionalgeneration
* ongoing refactoring of structure
* update models architecture
* remove SeamlessM4TMultiModal classes
* add tests
* adapt tests
* some non-working code for vocoder
* add seamlessM4T vocoder
* remove buggy line
* fix some hifigan related bugs
* remove hifigan specifc config
* change
* add WIP tokenization
* add seamlessM4T working tokenzier
* update tokenization
* add tentative feature extractor
* Update converting script
* update working FE
* refactor input_values -> input_features
* update FE
* changes in generation, tokenizer and modeling
* make style and add t2u_decoder_input_ids
* add intermediate outputs for ToSpeech models
* add vocoder to speech models
* update valueerror
* update FE with languages
* add vocoder convert
* update config docstrings and names
* update generation code and configuration
* remove todos and update config.pad_token_id to generation_config.pad_token_id
* move block vocoder
* remove unecessary code and uniformize tospeech code
* add feature extractor import
* make style and fix some copies from
* correct consistency + make fix-copies
* add processor code
* remove comments
* add fast tokenizer support
* correct pad_token_id in M4TModel
* correct config
* update tests and codes + make style
* make some suggested correstion - correct comments and change naming
* rename some attributes
* rename some attributes
* remove unecessary sequential
* remove option to use dur predictor
* nit
* refactor hifigan
* replace normalize_mean and normalize_var with do_normalize + save lang ids to generation config
* add tests
* change tgt_lang logic
* update generation ToSpeech
* add support import SeamlessM4TProcessor
* fix generate
* make tests
* update integration tests, add option to only return text and update tokenizer fast
* fix wrong function call
* update import and convert script
* update integration tests + update repo id
* correct paths and add first test
* update how new attention masks are computed
* update tests
* take first care of batching in vocoder code
* add batching with the vocoder
* add waveform lengths to model outputs
* make style
* add generate kwargs + forward kwargs of M4TModel
* add docstrings forward methods
* reformate docstrings
* add docstrings t2u model
* add another round of modeling docstrings + reformate speaker_id -> spkr_id
* make style
* fix check_repo
* make style
* add seamlessm4t to toctree
* correct check_config_attributes
* write config docstrings + some modifs
* make style
* add docstrings tokenizer
* add docstrings to processor, fe and tokenizers
* make style
* write first version of model docs
* fix FE + correct FE test
* fix tokenizer + add correct integration tests
* fix most tokenization tests
* make style
* correct most processor test
* add generation tests and fix num_return_sequences > 1
* correct integration tests -still one left
* make style
* correct position embedding
* change numbeams to 1
* refactor some modeling code and correct one test
* make style
* correct typo
* refactor intermediate fnn
* refactor feedforward conformer
* make style
* remove comments
* make style
* fix tokenizer tests
* make style
* correct processor tests
* make style
* correct S2TT integration
* Apply suggestions from Sanchit code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* correct typo
* replace torch.nn->nn + make style
* change Output naming (waveforms -> waveform) and ordering
* nit renaming and formating
* remove return None when not necessary
* refactor SeamlessM4TConformerFeedForward
* nit typo
* remove almost copied from comments
* add a copied from comment and remove an unecessary dropout
* remove inputs_embeds from speechencoder
* remove backward compatibiliy function
* reformate class docstrings for a few components
* remove unecessary methods
* split over 2 lines smthg hard to read
* make style
* replace two steps offset by one step as suggested
* nice typo
* move warnings
* remove useless lines from processor
* make generation non-standard test more robusts
* remove torch.inference_mode from tests
* split integration tests
* enrich md
* rename control_symbol_vocoder_offset->vocoder_offset
* clean convert file
* remove tgt_lang and src_lang from FE
* change generate docstring of ToText models
* update generate docstring of tospeech models
* unify how to deal withtext_decoder_input_ids
* add default spkr_id
* unify tgt_lang for t2u_model
* simplify tgt_lang verification
* remove a todo
* change config docstring
* make style
* simplify t2u_tgt_lang_id
* make style
* enrich/correct comments
* enrich .md
* correct typo in docstrings
* add torchaudio dependency
* update tokenizer
* make style and fix copies
* modify SeamlessM4TConverter with new tokenizer behaviour
* make style
* correct small typo docs
* fix import
* update docs and add requirement to tests
* add convert_fairseq2_to_hf in utils/not_doctested.txt
* update FE
* fix imports and make style
* remove torchaudio in FE test
* add seamless_m4t.md to utils/not_doctested.txt
* nits and change the way docstring dataset is loaded
* move checkpoints from ylacombe/ to facebook/ orga
* refactor warning/error to be in the 119 line width limit
* round overly precised floats
* add stereo audio behaviour
* refactor .md and make style
* enrich docs with more precised architecture description
* readd undocumented models
* make fix-copies
* apply some suggestions
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* correct bug from previous commit
* refactor a parameter allowing to clean the code + some small nits
* clean tokenizer
* make style and fix
* make style
* clean tokenizers arguments
* add precisions for some tests
* move docs from not_tested to slow
* modify tokenizer according to last comments
* add copied from statements in tests
* correct convert script
* correct parameter docstring style
* correct tokenization
* correct multi gpus
* make style
* clean modeling code
* make style
* add copied from statements
* add copied statements
* add support with ASR pipeline
* remove file added inadvertently
* fix docstrings seamlessM4TModel
* add seamlessM4TConfig to OBJECTS_TO_IGNORE due of unconventional markdown
* add seamlessm4t to assisted generation ignored models
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* initial commit
* add processor, add fuyu naming
* add draft processor
* fix processor
* remove dropout to fix loading of weights
* add image processing fixes from Pedro
* fix
* fix processor
* add basic processing fuyu test
* add documentation and TODO
* address comments, add tests, add doc
* replace assert with torch asserts
* add Mixins and fix tests
* clean imports
* add model tester, clean imports
* fix embedding test
* add updated tests from pre-release model
* Processor: return input_ids used for inference
* separate processing and model tests
* relax test tolerance for embeddings
* add test for logit comparison
* make sure fuyu image processor is imported in the init
* fix formattingh
* more formatting issues
* and more
* fixups
* remove some stuff
* nits
* update init
* remove the fuyu file
* Update integration test with release model
* Update conversion script.
The projection is not used, as confirmed by the authors.
* improve geenration
* Remove duplicate function
* Trickle down patches to model call
* processing fuyu updates
* remove things
* fix prepare_inputs_for_generation to fix generate()
* remove model_input
* update
* add generation tests
* nits
* draft leverage automodel and autoconfig
* nits
* fix dtype patch
* address comments, update READMEs and doc, include tests
* add working processing test, remove refs to subsequences
* add tests, remove Sequence classification
* processing
* update
* update the conversion script
* more processing cleanup
* safe import
* take out ModelTesterMixin for early release
* more cl;eanup
* more cleanup
* more cleanup
* and more
* register a buffer
* nits
* add postprocessing of generate output
* nits
* updates
* add one working test
* fix test
* make fixup works
* fixup
* Arthur's updates
* nits
* update
* update
* fix processor
* update tests
* passe more fixups
* fix
* nits
* don't import torch
* skip fuyu config for now
* fixup done
* fixup
* update
* oups
* nits
* Use input embeddings
* no buffer
* update
* styling processing fuyu
* fix test
* update licence
* protect torch import
* fixup and update not doctested
* kwargs should be passed
* udpates
* update the impofixuprts in the test
* protect import
* protecting imports
* protect imports in type checking
* add testing decorators
* protect top level import structure
* fix typo
* fix check init
* move requires_backend to functions
* Imports
* Protect types
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
* fix
* last attempt
* current work
* fix forward compatibility
* save all special tokens
* current state
* revert additional changes
* updates
* remove tokenizer.model
* add a test and the fix
* nit
* revert one more break
* fix typefield issue
* quality
* more tests
* fix fields for FC
* more nits?
* new additional changes
* how
* some updates
* simplify all
* more nits
* revert some things to original
* nice
* nits
* a small hack
* more nits
* ahhaha
* fixup
* update
* make test run on ci
* use subtesting
* update
* Update .circleci/create_circleci_config.py
* updates
* fixup
* nits
* replace typo
* fix the test
* nits
* update
* None max dif pls
* a partial fix
* had to revert one thing
* test the fast
* updates
* fixup
* and more nits
* more fixes
* update
* Oupsy 👁️
* nits
* fix marian
* on our way to heaven
* Update src/transformers/models/t5/tokenization_t5.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* fixup
* Update src/transformers/tokenization_utils_fast.py
Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>
* fix phobert
* skip some things, test more
* nits
* fixup
* fix deberta
* update
* update
* more updates
* skip one test
* more updates
* fix camembert
* can't test this one
* more good fixes
* kind of a major update
- seperate what is only done in fast in fast init and refactor
- add_token(AddedToken(..., speicla = True)) ignores it in fast
- better loading
* fixup
* more fixups
* fix pegasus and mpnet
* remove skipped tests
* fix phoneme tokenizer if self.verbose
* fix individual models
* update common tests
* update testing files
* all over again
* nits
* skip test for markup lm
* fixups
* fix order of addition in fast by sorting the added tokens decoder
* proper defaults for deberta
* correct default for fnet
* nits on add tokens, string initialized to special if special
* skip irrelevant herbert tests
* main fixes
* update test added_tokens_serialization
* the fix for bart like models and class instanciating
* update bart
* nit!
* update idefix test
* fix whisper!
* some fixup
* fixups
* revert some of the wrong chanegs
* fixup
* fixup
* skip marian
* skip the correct tests
* skip for tf and flax as well
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>
* Adjust length limits and allow naked conversation list inputs
* Adjust length limits and allow naked conversation list inputs
* Maybe use a slightly more reasonable limit than 1024
* Skip tests for old models that never supported this anyway
* Cleanup input docstrings
* More docstring cleanup + skip failing TF test
* Make fixup
* In assisted decoding, pass model_kwargs to model's forward call
Previously, assisted decoding would ignore any additional kwargs
that it doesn't explicitly handle. This was inconsistent with other
generation methods, which pass the model_kwargs through
prepare_inputs_for_generation and forward the returned dict to the
model's forward call.
The prepare_inputs_for_generation method needs to be amended in all
models, as previously it only kept the last input ID when a past_key_values
was passed.
* Improve variable names in _extend_attention_mask
* Refactor extending token_type_ids into a function
* Replace deepcopy with copy to optimize performance
* Update new persimmon model with llama changes for assisted generation
* Update new mistral model for assisted generation with prepare_inputs_for_generation
* Update position_ids creation in falcon prepare_inputs_for_generation to support assisted generation
* remove SharedDDP as it was drepracated
* apply review suggestion
* make style
* Oops,forgot to remove the compute_loss context manager in Seq2SeqTrainer.
* remove the unnecessary conditional statement
* keep the logic of IPEX
* clean code
* mix precision setup & make fixup
---------
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
* add FA-2 support for mistral
* fixup
* add sliding windows
* fixing few nits
* v1 slicing cache - logits do not match
* add comment
* fix bugs
* more mem efficient
* add warning once
* add warning once
* oops
* fixup
* more comments
* copy
* add safety checker
* fixup
* Update src/transformers/models/mistral/modeling_mistral.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* copied from
* up
* raise when padding side is right
* fixup
* add doc + few minor changes
* fixup
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add tokenizer kwarg inputs
* Adding tokenizer_kwargs to _sanitize_parameters
* Add truncation=True example to tests
* Update test_pipelines_fill_mask.py
* Update test_pipelines_fill_mask.py
* make fix-copies and make style
* Update fill_mask.py
Replace single tick with double
* make fix-copies
* Style
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* fix wav2vec2
* nit
* stash
* one more file to update
* fix byt5
* vocab size is 256, don't change that!
* use other revision
* test persimon in smaller size
* style
* tests
* nits
* update add tokens from pretrained
* test tokenization
* nits
* potential fnet fix?
* more nits
* nits
* correct test
* assert close
* udpate
* ouch
* fix it
* some more nits
* FINALLU
* use `adept` checkpoints
* more adept checkpoints
* that was invlved!
* make use of adapter_revision
* v1 adapter kwargs
* fix CI
* fix CI
* fix CI
* fixup
* add BC
* Update src/transformers/integrations/peft.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixup
* change it to error
* Update src/transformers/modeling_utils.py
* Update src/transformers/modeling_utils.py
* fixup
* change
* Update src/transformers/integrations/peft.py
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix PEFT multi adapters support
* refactor a bit
* save pretrained + BC + added tests
* Update src/transformers/integrations/peft.py
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
* add more tests
* add suggestion
* final changes
* adapt a bit
* fixup
* Update src/transformers/integrations/peft.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* adapt from suggestions
---------
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add kaldi fbank
* make style
* add herz_to_mel_kaldi tests
* add mel to hertz kaldi test
* integration tests
* correct test and remove comment
* make style
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* change parameter name
* Apply suggestions from Arthur review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update remove_dc_offset description
* fix bug + make style
* fix error in using np.exp instead of np.power
* make style
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix test for bart. Order is correct now let's skip BPEs
* ouf
* styling
* fix bert....
* slow refactoring
* current updates
* massive refactoring
* update
* NICE!
* update to see where I am at
* updates
* update
* update
* revert
* updates
* updates
* start supporting legacy_save
* styling
* big update
* revert some changes
* nits
* nniiiiiice
* small fixes
* kinda fix t5 with new behaviour
* major update
* fixup
* fix copies
* today's updates
* fix byt5
* upfate
* update
* update
* updates
* update vocab size test
* Barthez does not use not need the fairseq offset ids
* super calll must be after
* calll super
* move all super init
* move other super init
* fixup
* nits
* more fixes
* nits
* more fixes
* nits
* more fix
* remove useless files
* ouch all of them are affected
* and more!
* small imporvements
* no more sanitize token
* more changes around unique no split tokens
* partially fix more things
* keep legacy save but add warning
* so... more fixes
* updates
* guess deberta tokenizer could be nuked
* fixup
* fixup did some bad things
* nuke it if it breaks
* remove prints and pretrain fast from slow with new format.
* fixups
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fiou
* nit
* by default specials should not be normalized?
* update
* remove brakpoint
* updates
* a lot of updates
* fixup
* fixes revert some changes to match fast
* small nits
* that makes it cleaner
* fix camembert accordingly
* update
* some lest breaking changes
* update
* fixup
* fix byt5 and whisper mostly
* some more fixes, canine's byte vocab
* fix gpt2
* fix most of the perceiver tests (4 left)
* fix layout lmv3
* fixup
* fix copies for gpt2 style
* make sure to only warn once
* fix perciever and gpt2 tests
* some more backward compatibility: also read special tokens map because some ppl use it........////.....
* fixup
* add else when reading
* nits
* fresh updates
* fix copies
* will this make everything faster?
* fixes
* more fixes
* update
* more fixes
* fixup
* is the source of truth right?
* sorry camembert for the troubles
* current updates
* fixup
* update led
* update
* fix regression
* fix single word
* more model specific fixes
* fix t5 tests
* fixup
* more comments
* update
* fix nllb
* rstrip removed
* small fixes
* better handle additional_special_tokens and vocab sizes
* fixing
* styling
* fix 4 / 21
* fixup
* fix nlbb's tests
* some fixes
* fix t5
* fixes
* style
* fix canine tests
* damn this is nice
* nits
* m2m100 nit
* fixups
* fixes!
* fixup
* stash
* fix merge
* revert bad change
* fixup
* correct order for code Llama
* fix speecht5 post merge
* styling
* revert source of 11 fails
* small nits
* all changes in one go
* fnet hack
* fix 2 more tests
* update based on main branch of tokenizers
* fixup
* fix VITS issues
* more fixes
* fix mgp test
* fix camembert issues
* oups camembert still has 2 failing tests
* mluke fixes
* decode fixes
* small nits
* nits
* fix llama and vits
* fix camembert
* smal nits
* more fixes when initialising a fast from a slow and etc
* fix one of the last test
* fix CPM tokenizer test
* fixups
* fix pop2piano
* fixup
* ⚠️ Change tokenizers required version ⚠️
* ⚠️ Change tokenizers required version ⚠️
* "tokenizers>=0.14,<0.15", don't forget smaller than
* fix musicgen tests and pretraiendtokenizerfast
* fix owlvit and all
* update t5
* fix 800 red
* fix tests
* fix the fix of the fix of t5
* styling
* documentation nits
* cache _added_tokens_encoder
* fixups
* Nit
* fix red tests
* one last nit!
* make eveything a lot simpler
* Now it's over 😉
* few small nits
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* updates that work for now
* tests that should no be skipped / changed and fixed next
* fixup
* i am ashamed
* pushe the fix
* update
* fixups
* nits
* fix added_tokens_encoder
* fix canine test
* fix pegasus vocab
* fix transfoXL
* fixup
* whisper needs to be fixed for train new
* pegasus nits
* more pegasus fixes
* minor update
* better error message in failed test
* fix whisper failing test
* fix whisper failing test
* fix pegasus
* fixup
* fix **** pegasus
* reset things
* remove another file
* attempts to fix the strange custome encoder and offset
* nits here and there
* update
* fixup
* nit
* fix the whisper test
* nits nits
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* updates based on review
* some small update to potentially remove
* nits
* import rlu cache
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* move warning to `from_pretrained`
* update tests results now that the special tokens are always added
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
* moved `ctrl` to `Salesforce/ctrl`
redirects should theoretically work, but still updating those repo references for clarity
* Fixup
* Slow doc tests
* Add modeling file
---------
Co-authored-by: Lysandre <lysandre@huggingface.co>
* Allow PEFT model dict to be loaded
* make style
* make style
* Apply suggestions from code review
* address comments
* fixup
* final change
* added tests
* fix test
* better logic for handling if adapter has been loaded
* Update tests/peft_integration/test_peft_integration.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add pos embed interpolation for vision encoder
* style
* update config with interpolate_pos_encoding arg
* fix imports formatting
* take off copied from on vision embeddings
* add test for image embeddings interpolation
* add credit for interpolation code
* Update src/transformers/models/idefics/configuration_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics/vision.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix condition to check nbr image patches match shape of pos embeddings
* use kwargs in the forward methods for interpolation
* fix tests
* have interpolate_pos_encoding default to False instead of None
* Update tests/models/idefics/test_modeling_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics/test_modeling_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics/test_modeling_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics/configuration_idefics.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* take off for loop meant to print k,v
* add interpolate_pos_encoding arg in prepare_inputs_for_generation
* add test for interpolated generation
* fix edge case num_patches == num_positions and height == width
* add test for edge case
* fix pos_embed in interpolate
* allow interpolation in bf16 with upcasting
* Update src/transformers/models/idefics/vision.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/idefics/vision.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add multiple images tests for interpolation and generation
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add Bros boilerplate
* copy and pasted modeling_bros.py from official Bros repo
* update copyright of bros files
* copy tokenization_bros.py from official repo and update import path
* copy tokenization_bros_fast.py from official repo and update import path
* copy configuration_bros.py from official repo and update import path
* remove trailing period in copyright line
* copy and paste bros/__init__.py from official repo
* save formatting
* remove unused unnecessary pe_type argument - using only crel type
* resolve import issue
* remove unused model classes
* remove unnecessary tests
* remove unused classes
* fix original code's bug - layer_module's argument order
* clean up modeling auto
* add bbox to prepare_config_and_inputs
* set temporary value to hidden_size (32 is too low because of the of the
Bros' positional embedding)
* remove decoder test, update create_and_check* input arguemnts
* add missing variable to model tests
* do make fixup
* update bros.mdx
* add boilerate plate for no_head inference test
* update BROS_PRETRAINED_MODEL_ARCHIVE_LIST (add naver-clova-ocr prefix)
* add prepare_bros_batch_inputs function
* update modeling_common to add bbox inputs in Bros Model Test
* remove unnecessary model inference
* add test case
* add model_doc
* add test case for token_classification
* apply fixup
* update modeling code
* update BrosForTokenClassification loss calculation logic
* revert logits preprocessing logic to make sure logits have original shape
* - update class name
* - add BrosSpadeOutput
- update BrosConfig arguments
* add boilerate plate for no_head inference test
* add prepare_bros_batch_inputs function
* add test case
* add test case for token_classification
* update modeling code
* update BrosForTokenClassification loss calculation logic
* revert logits preprocessing logic to make sure logits have original shape
* apply masking on the fly
* add BrosSpadeForTokenLinking
* update class name
put docstring to the beginning of the file
* separate the logits calculation logic and loss calculation logic
* update logic for loss calculation so that logits shape doesn't change
when return
* update typo
* update prepare_config_and_inputs
* update dummy node initialization
* update last_hidden_states getting logic to consider when return_dict is False
* update box first token mask param
* bugfix: remove random attention mask generation
* update keys to ignore on load missing
* run make style and quality
* apply make style and quality of other codes
* update box_first_token_mask to bool type
* update index.md
* apply make style and quality
* apply make fix-copies
* pass check_repo
* update bros model doc
* docstring bugfix fix
* add checkpoint for doc, tokenizer for doc
* Update README.md
* Update docs/source/en/model_doc/bros.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update bros.md
* Update src/transformers/__init__.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/model_doc/bros.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* apply suggestions from code review
* apply suggestions from code review
* revert test_processor_markuplm.py
* Update test_processor_markuplm.py
* apply suggestions from code review
* apply suggestions from code review
* apply suggestions from code review
* update BrosSpadeELForTokenClassification head name to entity linker
* add doc string for config params
* update class, var names to more explicit and apply suggestions from code review
* remove unnecessary keys to ignore
* update relation extractor to be initialized with config
* add bros processor
* apply make style and quality
* update bros.md
* remove bros tokenizer, add bros processor that wraps bert tokenizer
* revert change
* apply make fix-copies
* update processor code, update itc -> initial token, stc -> subsequent token
* add type hint
* remove unnecessary condition branches in embedding forward
* fix auto tokenizer fail
* update docstring for each classes
* update bbox input dimension as standard 2 points and convert them to 4
points in forward pass
* update bros docs
* apply suggestions from code review : update Bros -> BROS in bros.md
* 1. box prefix var -> bbox
2. update variable names to be more explicit
* replace einsum with torch matmul
* apply style and quality
* remove unused argument
* remove unused arguments
* update docstrings
* apply suggestions from code review: add BrosBboxEmbeddings, replace
einsum with classical matrix operations
* revert einsum update
* update bros processor
* apply suggestions from code review
* add conversion script for bros
* Apply suggestions from code review
* fix readme
* apply fix-copies
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix word-level timestamps for audio < 30 seconds
* Fix code quality
* fix unit tests
* Fix unit tests
* Fix unit test
* temp: print out result
* temp: set max diff to None
* fix unit tests
* fix typo
* Fix typo
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Use generation config for `num_frames`
* fix docs
* Move `num_frames` to kwargs
* compute stride/attn_mask once
* mark test as slow
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
* Fix GPTNeoX beam search when using parallelize
* Fix beam search idx device when using model parallel
* remove onnx related stuff
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix: move test_beam_search_on_multi_gpu to GenerationTesterMixin
* fix: add right item to _no_split_modules of MegaPreTrainedModel
* fix: add num_beams within parallelized beam_search test
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* First commit while I figure this out
* make fixup
* Remove unused method
* Store prompt attrib
* Fix prompt argument for tests
* Make same changes in fast tokenizer
* Remove global prompts from fast tokenizer too
* stash commit
* stash commit
* Migrate PromptConfig to its True Final Location
* Replace Conversation entirely with the new class
* Import/dependency fixes
* Import/dependency fixes
* Change format for lots of default prompts
* More default prompt fixups
* Revert llama old methods so we can compare
* Fix some default configs
* Fix some default configs
* Fix misspelled kwarg
* Fixes for Blenderbot
* make fixup
* little rebase cleanup
* Add basic documentation
* Quick doc fix
* Truncate docstring for now
* Add handling for the case when messages is a single string
* Quick llama merges
* Update conversational pipeline and tests
* Add a couple of legacy properties for backward compatibility
* More legacy handling
* Add docstring for build_conversation_input_ids
* Restructure PromptConfig
* Let's start T E M P L A T I N G
* Refactor all default configs to use templates instead
* Revert changes to the special token properties since we don't need them anymore
* More class templates
* Make the sandbox even sandier
* Everything replaced with pure templating
* Remove docs for PromptConfig
* Add testing and optional requirement boilerplate
* Fix imports and make fixup
* Fix LLaMA tests and add Conversation docstring
* Finally get LLaMA working with the template system
* Finally get LLaMA working with the template system
* make fixup
* make fixup
* fmt-off for the long lists of test tokens
* Rename method to apply_chat_template for now
* Start on documentation
* Make chat_template a property that reads through to the default if it's not set
* Expand docs
* Expand chat templating doc some more
* trim/lstrip blocks by default and update doc
* Few doc tweaks
* rebase cleanup
* Clarify docstring
* rebase cleanup
* rebase cleanup
* make fixup
* Quick doc edit
* Reformat the standard template to match ChatML
* Re-add PEFT check
* Update docs/source/en/chat_templating.md
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add apply_chat_template to the tokenizer doc
* make fixup
* Add doc links
* Fix chat links
* Fix chat links
* Explain system messages in the doc
* Add chat template test
* Proper save-loading for chat template attribute
* Add test skips for layout models
* Remove _build_conversation_input_ids, add default_chat_template to code_llama
* Make sure all LLaMA models are using the latest template
* Remove default_system_prompt block in code_llama because it has no default prompt
* Update ConversationPipeline preprocess
* Add correct #Copied from links to the default_chat_templates
* Remove unneeded type checking line
* Add a dummy mark_processsed method
* Reorganize Conversation to have **deprecated_kwargs
* Update chat_templating.md
* Quick fix to LLAMA tests
* Small doc tweaks
* Add proper docstrings and "copied from" statements to all default chat templates
* Merge use_default_system_prompt support for code_llama too
* Improve clarity around self.chat_template
* Docstring fix
* Fix blenderbot default template
* More doctest fix
* Break out some tokenizer kwargs
* Update doc to explain default templates
* Quick tweaks to tokenizer args
* Cleanups for tokenizer args
* Add note about cacheing
* Quick tweak to the chat-templating doc
* Update the LLaMA template with error checking and correct system message embedding
* make fixup
* make fixup
* add requires_jinja
* Cleanup to expected output formatting
* Add cacheing
* Fix typo in llama default template
* Update LLaMA tests
* Update documentation
* Improved legacy handling in the Conversation class
* Update Jinja template with proper error handling
* Quick bugfix
* Proper exception raising
* Change cacheing behaviour so it doesn't try to pickle an entire Jinja env
* make fixup
* rebase cleanup
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [Whisper Tokenizer] Fix tests after adding timestamps
* fix s2t tokenizer tests
* fix vocab test
* backwards comp
* fix tests
* comment
* style
* fix last test
* fix fast
* make faster
* move logic to decode
* remove skip test
* fix decode with offsets
* fix special tokens
* empty commit to re-trigger ci
* use lru cache
* Add @dataclass to MaskFormerPixelDecoderOutput
* Add dataclass check if subclass of ModelOutout
* Use unittest assertRaises rather than pytest per contribution doc
* Update src/transformers/utils/generic.py per suggested change
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add: check to remove metaspace from marian tokenizer
* fix: metaspace character being removed from everywhere
* fix: remove redundant check at top
* add: test for marian tokenizer decode fix
* fix: simplified the test
* enable optuna multi-objectives feature
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update hpo doc
* update docstring
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* extend direction to List[str] type
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix issues in test_exponential_decay_length_penalty
Fix tests which were broken and add validation of negative scores.
Current test didn't take into account that ExponentialDecayLengthPenalty updates the score inplace, resulting in updates to base tested Tensor.
In addition, the gt assert had empty Tensors due to indexing along the batch dimension.
Test is currently expected to fail to show ExponentialDecayLengthPenalty issues with negative scores
* Fix ExponentialDecayLengthPenalty negative logits issue
In cases where the scores are negative, ExponentialDecayLengthPenalty decreases the score of eos_token_id instead of increasing it.
To fix this issue we compute the penalty of the absolute value and add it to the original score.
* Add examples for ExponentialDecayLengthPenalty
* Fix styling issue in ExponentialDecayLengthPenalty doc
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Style and quality fix
* Fix example outputs
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* intiial commit
* updates
* nits
* update conversion script
* update conversion script
* use path to load
* add tips etc
* some modeling logic
* modeling update
* more nits
* nits
* normal layer norm
* update config and doc
* nits
* update doc remove unused
* update
* fix inits and stuff
* fixup
* revert wrong changes
* updates
* more nits
* add default config values to the configuration file
* fixup happy
* update
* 2 tests left
* update readmes
* more nits
* slow test and more documentation
* update readme
* fix licences
* styling
* use fast if possible when saving tokenizer
* remove todo
* remove tokenization tests
* small last nits
* Apply suggestions from code review
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* nits to skip the timout doctest
* fix integration test
* fix test
* update eos token
* update to allow fast tokenization
* styling
* fix codeLlama as well for the update post processor
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add more copied from statements
* update
* doc passes doctest
* remove `# final layer norm?`
* change docstring prompot
* update
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* don't doctest the conversion script as it requires more packages
* don't init a model in the config
* oups
* fix doctest
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add new arg for gptq
* add tests
* add min version autogptq
* fix order
* skip test
* fix
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix style
* change model path
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add support for deepspeed optimizer and HF scheduler
* fix bug
* fix the import
* fix issue with deepspeed scheduler saving for hf optim + hf scheduler scenario
* fix loading of hf scheduler when loading deepspeed checkpoint
* fix import of `DeepSpeedSchedulerWrapper`
* add tests
* add the comment and skip the failing tests
* address comment
* Put Falcon back
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update test
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add Blip2 model in VQA pipeline
* use require_torch_gpu for test_large_model_pt_blip2
* use can_generate in vqa pipeline
* test Blip2ForConditionalGeneration using float16
* remove custom can_generate from Blip2ForConditionalGeneration
* return when length is zero
* Add tests
Co-authored-by: Avnish Narayan <38871737avnishn@users.noreply.github.com>
* Co-authored-by: avnishn
<38871737+avnishn@users.noreply.github.com>
* codeLlama doc should not be on Main
* update test
---------
Co-authored-by: Avnish Narayan <38871737avnishn@users.noreply.github.com>
* fixing name position_embeddings to object_queries
* [fix] renaming variable and docstring do object queries
* [fix] comment position_embedding to object queries
* [feat] changes from make-fix-copies to keep consistency
* Revert "[feat] changes from make-fix-copies to keep consistency"
This reverts commit 56e3e9ede1.
* [tests] fix wrong expected score
* [fix] wrong assignment causing wrong tensor shapes
* [fix] fixing position_embeddings to object queries to keep consistency (make fix copies)
* [fix] make fix copies, renaming position_embeddings to object_queries
* [fix] positional_embeddingss to object queries, fixes from make fix copies
* [fix] comments frmo make fix copies
* [fix] adding args validation to keep version support
* [fix] adding args validation to keep version support -conditional detr
* [fix] adding args validation to keep version support - maskformer
* [style] make fixup style fixes
* [feat] adding args checking
* [feat] fixcopies and args checking
* make fixup
* make fixup
---------
Co-authored-by: Lorenzobattistela <lorenzobattistela@gmail.com>
* add all
* Revert "Delete .github directory"
This reverts commit 9b0ff7b052e2b20b629a26fb13606b78a42944d1.
* make conversion script backward compatible
* fixup
* more styling
* copy to llama changes
* fix repo consistency
* nits
* document correct classes
* updates
* more fixes
* nits
* update auto mappings
* add readmes
* smallupdates
* llama-code replace with llama_code
* make fixup
* updates to the testsing suite
* fix fast nits
* more small fixes
* fix decode
* fix template processing
* properly reset the normalizer
* nits processor
* tokenization tests pass
* styling
* last tests
* additional nits
* one test is left
* nits
Co-authored-by faabian <faabian@users.noreply.github.com>
* update failing test
* fixup
* remove decode infilling users should handle it on their onw after generation, padding can be a problem
* update
* make test slow and more meaningfull
* fixup
* doc update
* fixup
* Apply suggestions from code review
* add kwargs doc
* tokenizer requires `requires_backend`
* type requires_backends
* CodeLlama instead of LlamaCode
* more name cahnges
* nits
* make doctests happy
* small pipeline nits
* last nit
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* update
* add codellama to toctree
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Correct attention mask dtype
* reformat code
* add a test for boolean mask
* convert test to fast test
* delete unwanted print
* use assertTrue for testing
* Add FlaxClipTextModelWithProjection
This is necessary to support the Flax port of Stable Diffusion XL: fb6d705fb5/text_encoder_2/config.json (L3)
Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: Juan Acevedo <juancevedo@gmail.com>
* Use FlaxCLIPTextModelOutput
* make fix-copies again
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Use `return_dict` for consistency with other uses.
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* Fix docstring example.
* Add new model to FlaxCLIPTextModelTest
* Add to IGNORE_NON_AUTO_CONFIGURED list
* Fix naming convention.
---------
Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: Juan Acevedo <juancevedo@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* properly support Sequence of pretokenizers
* actual fix
* make sure the fix works. Tests are not working for sure!
* hacky way
* add TODO
* update
* add a todo
* nits
* rename test
* nits
* rename test
* add: NumberNormalizer works for integers, floats, common currencies, negative numbers and percentages
* fix: renamed number normalizer class and added normalization to SpeechT5Processor
* fix: restyled with black and ruff, should pass code quality tests
* fix: moved normalization to tokenizer and other small changes to normalizer
* add: test for normalization and changed the existing full tokenizer test
* fix: tokenization tests now pass, made changes to existing tokenization where normalization is covered; added normalize arg to func signature
* fix: changed default normalize setting to False, modified the tests a bit
* fix: added support for comma separated numbers, tokenization on the fly with kwargs and normalizer getter setter funcs
* init commit
* config updated also some modeling
* Processor and Model config combined
* extraction pipeline(upto before spectogram & mel_conditioner) added but not properly tested
* model loading successful!
* feature extractor done!
* FE can now be called from HF
* postprocessing added in fe file
* same as prev commit
* Pop2PianoConfig doc done
* cfg docs slightly changed
* fe docs done
* batched
* batched working!
* temp
* v1
* checking
* trying to go with generate
* with generate and model tests passed
* before rebasing
* .
* tests done docs done remaining others & nits
* nits
* LogMelSpectogram shifted to FeatureExtractor
* is_tf rmeoved from pop2piano/init
* import solved
* tokenization tests added
* minor fixed regarding modeling_pop2piano
* tokenizer changed to only return midi_object and other changes
* Updated paper abstract(Camera-ready version) (#2)
* more comments and nits
* ruff changes
* code quality fix
* sg comments
* t5 change added and rebased
* comments except batching
* batching done
* comments
* small doc fix
* example removed from modeling
* ckpt
* forward it compatible with fe and generation done
* comments
* comments
* code-quality fix(maybe)
* ckpts changed
* doc file changed from mdx to md
* test fixes
* tokenizer test fix
* changes
* nits done main changes remaining
* code modified
* Pop2PianoProcessor added with tests
* other comments
* added Pop2PianoProcessor to dummy_objects
* added require_onnx to modeling file
* changes
* update .md file
* remove extra line in index.md
* back to the main index
* added pop2piano to index
* Added tokenizer.__call__ with valid args and batch_decode and aligned the processor part too
* changes
* added return types to 2 tokenizer methods
* the PR build test might work now
* added backends
* PR build fix
* vocab added
* comments
* refactored vocab into 1 file
* added conversion script
* comments
* essentia version changed in .md
* comments
* more tokenizer tests added
* minor fix
* tests extended for outputs acc check
* small fix
---------
Co-authored-by: Jongho Choi <sweetcocoa@snu.ac.kr>
* a draft version
* v2 integration
* fix
* make it more generic and works for IA3
* add set adapter and multiple adapters support
* fixup
* adapt a bit
* oops
* oops
* oops
* adapt more
* fix
* add more refactor
* now works with model class
* change it to instance method as it causes issues with `jit`.
* add CR
* change method name
* add `add_adapter` method
* clean up
* Update src/transformers/adapters/peft_mixin.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add moe utils
* fixup
* Update src/transformers/adapters/peft_mixin.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* adapt
* oops
* fixup
* add is_peft_available
* remove `requires_backend`
* trainer compatibility
* fixup + docstring
* more details
* trigger CI
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
* fixup + is_main_process
* added `save_peft_format` in save_pretrained
* up
* fix nits here and there
* nits here and there.
* docs
* revert `encoding="utf-8"`
* comment
* added slow tests before the PEFT release.
* fixup and nits
* let's be on the safe zone
* added more comments
* v1 docs
* add remaining docs
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* move to `lib_integrations`
* fixup
* this time fixup
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* address final comments
* refactor to use `token`
* add PEFT to DockerFile for slow tests.
* added pipeline support.
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* draft changes
* update and add tests
* styling for no
* move test
* path to usable model
* update test
* small update
* update bertbased tokenizers
* don'tuse kwargs for _tokenize
* don'tuse kwargs for _tokenize
* fix copies
* update
* update test for special tokenizers
* fixup
* skip two tests
* remove pdb breakpiont()
* wowo
* rewrite custom tests
* nits
* revert chang in target keys
* fix markup lm
* update documentation of the argument
* Replaces calls to `.cuda` with `.to(torch_device)` in tests
`torch.Tensor.cuda()` is a pre-0.4 solution to changing a tensor's device. It is recommended to prefer `.to(...)` for greater flexibility and error handling. Furthermore, this makes it more consistent with other tests (that tend to use `.to(torch_device)`) and ensures the correct device backend is used (if `torch_device` is neither `cpu` or `cuda`).
* addressing review comments
* more formatting changes in Bloom test
* `make style`
* Update tests/models/bloom/test_modeling_bloom.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixes style failures
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add AutoModelForTextToSpeech class
* add TTS pipeline and tessting
* add docstrings to text_to_speech pipeline
* fix torch dependency
* corrector 'processor is None' case in Pipeline
* correct repo id
* modify text-to-speech -> text-to-audio
* remove processor
* rename text_to_speech pipelines files to text_audio
* add textToWaveform and textToSpectrogram instead of textToAudio classes
* update TTS pipeline to the bare minimum
* update tests TTS pipeline
* make style and erase useless import torch in TTS pipeline tests
* modify how to check if generate or forward in TTS pipeline
* remove unnecessary extra new lines
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* refactor input_texts -> text_inputs
* correct docstrings of TTS.__call__
* correct the shape of generated waveform
* take care of Bark tokenizer special case
* correct run_pipeline_test TTS
* make style
* update TTS docstrings
* address Sylvain nit refactors
* make style
* refactor into one liners
* correct squeeze
* correct way to test if forward or generate
* Update output audio waveform shape
* make style
* correct import
* modify how the TTS pipeline test if a model can generate
* align shape output of TTS pipeline with consistent shape
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* fix EVERYTHING
* more fixes
* ⚗️⚗️ Tokenizer magic ⚗️⚗️
* wrong value but test passes for the TODO
* update
* updat
* safe protobuf import?
* style
* non gated repo
* update
* fixup
* Update src/transformers/models/llama/tokenization_llama.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/llama/tokenization_llama.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/t5/test_tokenization_t5.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* nits
* fix t5 too
* use assert equal
* fix llama decoding
* nits on t5
* fixup
* only remove the prefix space, not other spaces
* more deconding tests and more todos
* fix CI as well
* fixup
* skip failing test on CI (its tf its ok)
* skip test_subword_regularization_tokenizer that is also crashing on the CI for TF
* update llama
* revert good fixes
* fixup
* empty
* explain why we need to encode with an additional token
* better warning?
* nits
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix
* revert cahnges and update resizing of embedding layer
* use wraning
* fixup
* more styling nits
* fix all tests that overload the embedding tests
* 👀👀 remove breakpoint
* remove useless overload + overload correctly where needed
* resize lm head with new vocab size
* reverse not necessary changes
* style
* fix CIs!
* fix last CI tests, adapt bark and Marian
* fixup
* [ASR Pipeline] Fix init
* refactor test
* change default kwarg setting
* only perform checks if we have to
* override init
* move pre/forward/post checks to sanitize
* Add copied from statements for image processors
* Move out rescale and normalize to base image processor
* Remove rescale and normalize from vit (post rebase)
* Update docstrings and tidy up
* PR comments
* Add input_data_format as preprocess argument
* Resolve tests and tidy up
* Remove num_channels argument
* Update doc strings -> default ints not in code formatting
* Make training args fully immutable
* Working tests, PyTorch
* In test_trainer
* during testing
* Use proper dataclass way
* Fix test
* Another one
* Fix tf
* Lingering slow
* Exception
* Clean
* Refactor image processor test mixin
- Move test_call_numpy, test_call_pytorch, test_call_pil to mixin
- Rename mixin to reflect handling of logic more than saving
- Add prepare_image_inputs, expected_image_outputs for tests
* Fix for oneformer