mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
modify context length for GPTQ + version bump (#25899)
* add new arg for gptq * add tests * add min version autogptq * fix order * skip test * fix * Update src/transformers/modeling_utils.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix style * change model path --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
This commit is contained in:
parent
300d6a4a62
commit
fa6107c97e
@ -2546,7 +2546,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
logger.warning(
|
||||
"You passed `quantization_config` to `from_pretrained` but the model you're loading already has a "
|
||||
"`quantization_config` attribute and has already quantized weights. However, loading attributes"
|
||||
" (e.g. disable_exllama, use_cuda_fp16) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
|
||||
" (e.g. disable_exllama, use_cuda_fp16, max_input_length) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
|
||||
)
|
||||
if (
|
||||
quantization_method_from_args == QuantizationMethod.GPTQ
|
||||
@ -2556,7 +2556,11 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
raise RuntimeError("GPU is required to quantize or run quantize model.")
|
||||
elif not (is_optimum_available() and is_auto_gptq_available()):
|
||||
raise ImportError(
|
||||
"Loading GPTQ quantized model requires optimum library : `pip install optimum` and auto-gptq library 'pip install auto-gptq'"
|
||||
"Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)"
|
||||
)
|
||||
elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"):
|
||||
raise ImportError(
|
||||
"You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`"
|
||||
)
|
||||
else:
|
||||
# Need to protect the import
|
||||
|
@ -346,6 +346,9 @@ class GPTQConfig(QuantizationConfigMixin):
|
||||
The pad token id. Needed to prepare the dataset when `batch_size` > 1.
|
||||
disable_exllama (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exllama backend. Only works with `bits` = 4.
|
||||
max_input_length (`int`, *optional*)
|
||||
The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input
|
||||
length. It is specific to the exllama backend with act-order.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@ -365,6 +368,7 @@ class GPTQConfig(QuantizationConfigMixin):
|
||||
batch_size: int = 1,
|
||||
pad_token_id: Optional[int] = None,
|
||||
disable_exllama: bool = False,
|
||||
max_input_length: Optional[int] = None,
|
||||
**kwargs,
|
||||
):
|
||||
self.quant_method = QuantizationMethod.GPTQ
|
||||
@ -383,11 +387,12 @@ class GPTQConfig(QuantizationConfigMixin):
|
||||
self.batch_size = batch_size
|
||||
self.pad_token_id = pad_token_id
|
||||
self.disable_exllama = disable_exllama
|
||||
self.max_input_length = max_input_length
|
||||
self.post_init()
|
||||
|
||||
def get_loading_attributes(self):
|
||||
attibutes_dict = copy.deepcopy(self.__dict__)
|
||||
loading_attibutes = ["disable_exllama", "use_cuda_fp16"]
|
||||
loading_attibutes = ["disable_exllama", "use_cuda_fp16", "max_input_length"]
|
||||
loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes}
|
||||
return loading_attibutes_dict
|
||||
|
||||
|
@ -86,6 +86,8 @@ class GPTQTest(unittest.TestCase):
|
||||
|
||||
EXPECTED_OUTPUTS = set()
|
||||
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
|
||||
EXPECTED_OUTPUTS.add("Hello my name is John, I am a professional photographer and I")
|
||||
EXPECTED_OUTPUTS.add("Hello my name is John, I am a student in the University of")
|
||||
EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.")
|
||||
EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the")
|
||||
EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,")
|
||||
@ -236,6 +238,82 @@ class GPTQTestDeviceMapExllama(GPTQTest):
|
||||
disable_exllama = False
|
||||
|
||||
|
||||
@slow
|
||||
@require_optimum
|
||||
@require_auto_gptq
|
||||
@require_torch_gpu
|
||||
@require_accelerate
|
||||
class GPTQTestActOrderExllama(unittest.TestCase):
|
||||
"""
|
||||
Test GPTQ model with exllama kernel and desc_act=True (also known as act-order).
|
||||
More information on those arguments here:
|
||||
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig
|
||||
"""
|
||||
|
||||
EXPECTED_OUTPUTS = set()
|
||||
EXPECTED_OUTPUTS.add("Hello my name is Katie and I am a 20 year")
|
||||
model_name = "hf-internal-testing/Llama-2-7B-GPTQ"
|
||||
revision = "gptq-4bit-128g-actorder_True"
|
||||
input_text = "Hello my name is"
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
"""
|
||||
Setup quantized model
|
||||
"""
|
||||
|
||||
cls.quantization_config = GPTQConfig(bits=4, disable_exllama=False, max_input_length=4028)
|
||||
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
|
||||
cls.model_name,
|
||||
revision=cls.revision,
|
||||
torch_dtype=torch.float16,
|
||||
device_map={"": 0},
|
||||
quantization_config=cls.quantization_config,
|
||||
)
|
||||
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True)
|
||||
|
||||
def check_inference_correctness(self, model):
|
||||
"""
|
||||
Test the generation quality of the quantized model and see that we are matching the expected output.
|
||||
Given that we are operating on small numbers + the testing model is relatively small, we might not get
|
||||
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
|
||||
"""
|
||||
|
||||
# Check that inference pass works on the model
|
||||
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
|
||||
|
||||
# Check the exactness of the results
|
||||
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
|
||||
|
||||
# Get the generation
|
||||
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
|
||||
|
||||
def test_generate_quality(self):
|
||||
"""
|
||||
Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens
|
||||
"""
|
||||
self.check_inference_correctness(self.quantized_model)
|
||||
|
||||
# this test will fail until the next release of optimum
|
||||
@pytest.mark.skip
|
||||
def test_max_input_length(self):
|
||||
"""
|
||||
Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend.
|
||||
"""
|
||||
|
||||
prompt = "I am in Paris and" * 1000
|
||||
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
|
||||
self.assertTrue(inp["input_ids"].shape[1] > 4028)
|
||||
with self.assertRaises(RuntimeError) as cm:
|
||||
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
|
||||
self.assertTrue("temp_state buffer is too small" in str(cm.exception))
|
||||
|
||||
prompt = "I am in Paris and" * 500
|
||||
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
|
||||
self.assertTrue(inp["input_ids"].shape[1] < 4028)
|
||||
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
|
||||
|
||||
|
||||
# fail when run all together
|
||||
@pytest.mark.skip
|
||||
@require_accelerate
|
||||
|
Loading…
Reference in New Issue
Block a user