mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
Refactor image processor testers (#25450)
* Refactor image processor test mixin - Move test_call_numpy, test_call_pytorch, test_call_pil to mixin - Rename mixin to reflect handling of logic more than saving - Add prepare_image_inputs, expected_image_outputs for tests * Fix for oneformer
This commit is contained in:
parent
454957c9bb
commit
41d56ea6dd
@ -16,13 +16,12 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_dataset
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -81,6 +80,20 @@ class BeitImageProcessingTester(unittest.TestCase):
|
||||
"do_reduce_labels": self.do_reduce_labels,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
def prepare_semantic_single_inputs():
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
|
||||
@ -104,7 +117,7 @@ def prepare_semantic_batch_inputs():
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class BeitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class BeitImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = BeitImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -137,110 +150,11 @@ class BeitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase)
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
self.assertEqual(image_processor.do_reduce_labels, True)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_segmentation_maps(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
maps = []
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import BlipImageProcessor
|
||||
|
||||
|
||||
@ -76,40 +69,24 @@ class BlipImageProcessingTester(unittest.TestCase):
|
||||
"do_pad": self.do_pad,
|
||||
}
|
||||
|
||||
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
||||
or a list of PyTorch tensors if one specifies torchify=True.
|
||||
"""
|
||||
def expected_output_image_shape(self, images):
|
||||
return 3, self.size["height"], self.size["width"]
|
||||
|
||||
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
||||
|
||||
if equal_resolution:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
image_inputs.append(
|
||||
np.random.randint(
|
||||
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
|
||||
)
|
||||
)
|
||||
else:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
|
||||
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))
|
||||
|
||||
if not numpify and not torchify:
|
||||
# PIL expects the channel dimension as last dimension
|
||||
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
||||
|
||||
if torchify:
|
||||
image_inputs = [torch.from_numpy(x) for x in image_inputs]
|
||||
|
||||
return image_inputs
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class BlipImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class BlipImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = BlipImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -128,109 +105,10 @@ class BlipImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase)
|
||||
self.assertTrue(hasattr(image_processor, "image_std"))
|
||||
self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class BlipImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class BlipImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = BlipImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -250,37 +128,10 @@ class BlipImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unitte
|
||||
self.assertTrue(hasattr(image_processor, "image_std"))
|
||||
self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
@unittest.skip("BlipImageProcessor does not support 4 channels yet") # FIXME Amy
|
||||
def test_call_numpy(self):
|
||||
return super().test_call_numpy()
|
||||
|
||||
def test_call_pil_four_channels(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.expected_encoded_image_num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.expected_encoded_image_num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
@unittest.skip("BlipImageProcessor does not support 4 channels yet") # FIXME Amy
|
||||
def test_call_pytorch(self):
|
||||
return super().test_call_torch()
|
||||
|
@ -17,17 +17,12 @@
|
||||
import unittest
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
@ -119,10 +114,25 @@ class BridgeTowerImageProcessingTester(unittest.TestCase):
|
||||
|
||||
return expected_height, expected_width
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class BridgeTowerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class BridgeTowerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = BridgeTowerImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -140,99 +150,3 @@ class BridgeTowerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
|
||||
self.assertTrue(hasattr(image_processing, "do_resize"))
|
||||
self.assertTrue(hasattr(image_processing, "size"))
|
||||
self.assertTrue(hasattr(image_processing, "size_divisor"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image processor
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image processor
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image processor
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import ChineseCLIPImageProcessor
|
||||
|
||||
|
||||
@ -80,40 +73,24 @@ class ChineseCLIPImageProcessingTester(unittest.TestCase):
|
||||
"do_convert_rgb": self.do_convert_rgb,
|
||||
}
|
||||
|
||||
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
||||
or a list of PyTorch tensors if one specifies torchify=True.
|
||||
"""
|
||||
def expected_output_image_shape(self, images):
|
||||
return 3, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
||||
|
||||
if equal_resolution:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
image_inputs.append(
|
||||
np.random.randint(
|
||||
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
|
||||
)
|
||||
)
|
||||
else:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
|
||||
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))
|
||||
|
||||
if not numpify and not torchify:
|
||||
# PIL expects the channel dimension as last dimension
|
||||
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
||||
|
||||
if torchify:
|
||||
image_inputs = [torch.from_numpy(x) for x in image_inputs]
|
||||
|
||||
return image_inputs
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class ChineseCLIPImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class ChineseCLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -143,109 +120,10 @@ class ChineseCLIPImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class ChineseCLIPImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class ChineseCLIPImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -267,37 +145,10 @@ class ChineseCLIPImageProcessingTestFourChannels(ImageProcessingSavingTestMixin,
|
||||
self.assertTrue(hasattr(image_processing, "image_std"))
|
||||
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
@unittest.skip("ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy
|
||||
def test_call_numpy(self):
|
||||
return super().test_call_numpy()
|
||||
|
||||
def test_call_pil_four_channels(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.expected_encoded_image_num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.expected_encoded_image_num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
@unittest.skip("ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy
|
||||
def test_call_pytorch(self):
|
||||
return super().test_call_torch()
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import CLIPImageProcessor
|
||||
|
||||
|
||||
@ -80,40 +73,24 @@ class CLIPImageProcessingTester(unittest.TestCase):
|
||||
"do_convert_rgb": self.do_convert_rgb,
|
||||
}
|
||||
|
||||
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
||||
or a list of PyTorch tensors if one specifies torchify=True.
|
||||
"""
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
||||
|
||||
if equal_resolution:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
image_inputs.append(
|
||||
np.random.randint(
|
||||
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
|
||||
)
|
||||
)
|
||||
else:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
|
||||
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))
|
||||
|
||||
if not numpify and not torchify:
|
||||
# PIL expects the channel dimension as last dimension
|
||||
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
||||
|
||||
if torchify:
|
||||
image_inputs = [torch.from_numpy(x) for x in image_inputs]
|
||||
|
||||
return image_inputs
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class CLIPImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class CLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = CLIPImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -142,162 +119,3 @@ class CLIPImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase)
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class CLIPImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
image_processing_class = CLIPImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
self.image_processor_tester = CLIPImageProcessingTester(self, num_channels=4)
|
||||
self.expected_encoded_image_num_channels = 3
|
||||
|
||||
@property
|
||||
def image_processor_dict(self):
|
||||
return self.image_processor_tester.prepare_image_processor_dict()
|
||||
|
||||
def test_image_processor_properties(self):
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
self.assertTrue(hasattr(image_processing, "do_resize"))
|
||||
self.assertTrue(hasattr(image_processing, "size"))
|
||||
self.assertTrue(hasattr(image_processing, "do_center_crop"))
|
||||
self.assertTrue(hasattr(image_processing, "center_crop"))
|
||||
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
||||
self.assertTrue(hasattr(image_processing, "image_mean"))
|
||||
self.assertTrue(hasattr(image_processing, "image_std"))
|
||||
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil_four_channels(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.expected_encoded_image_num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.expected_encoded_image_num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -18,12 +18,10 @@ import json
|
||||
import pathlib
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision, slow
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -111,10 +109,25 @@ class ConditionalDetrImageProcessingTester(unittest.TestCase):
|
||||
|
||||
return expected_height, expected_width
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class ConditionalDetrImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class ConditionalDetrImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = ConditionalDetrImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -143,107 +156,6 @@ class ConditionalDetrImageProcessingTest(ImageProcessingSavingTestMixin, unittes
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
|
||||
self.assertEqual(image_processor.do_pad, False)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
@slow
|
||||
def test_call_pytorch_with_coco_detection_annotations(self):
|
||||
# prepare image and target
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import ConvNextImageProcessor
|
||||
|
||||
|
||||
@ -73,10 +66,24 @@ class ConvNextImageProcessingTester(unittest.TestCase):
|
||||
"crop_pct": self.crop_pct,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["shortest_edge"], self.size["shortest_edge"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class ConvNextImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class ConvNextImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = ConvNextImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -101,102 +108,3 @@ class ConvNextImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestC
|
||||
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
self.image_processor_tester.size["shortest_edge"],
|
||||
),
|
||||
)
|
||||
|
@ -18,12 +18,10 @@ import json
|
||||
import pathlib
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision, slow
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -111,10 +109,25 @@ class DeformableDetrImageProcessingTester(unittest.TestCase):
|
||||
|
||||
return expected_height, expected_width
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class DeformableDetrImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class DeformableDetrImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = DeformableDetrImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -145,107 +158,6 @@ class DeformableDetrImageProcessingTest(ImageProcessingSavingTestMixin, unittest
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
|
||||
self.assertEqual(image_processor.do_pad, False)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
@slow
|
||||
def test_call_pytorch_with_coco_detection_annotations(self):
|
||||
# prepare image and target
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import DeiTImageProcessor
|
||||
|
||||
|
||||
@ -78,10 +71,24 @@ class DeiTImageProcessingTester(unittest.TestCase):
|
||||
"image_std": self.image_std,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class DeiTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class DeiTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = DeiTImageProcessor if is_vision_available() else None
|
||||
test_cast_dtype = True
|
||||
|
||||
@ -110,102 +117,3 @@ class DeiTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase)
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -18,12 +18,10 @@ import json
|
||||
import pathlib
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision, slow
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -111,10 +109,25 @@ class DetaImageProcessingTester(unittest.TestCase):
|
||||
|
||||
return expected_height, expected_width
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class DetaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class DetaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = DetaImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -139,107 +152,6 @@ class DetaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
|
||||
self.assertEqual(image_processor.do_pad, True)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
@slow
|
||||
def test_call_pytorch_with_coco_detection_annotations(self):
|
||||
# prepare image and target
|
||||
|
@ -18,12 +18,10 @@ import json
|
||||
import pathlib
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision, slow
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -111,10 +109,25 @@ class DetrImageProcessingTester(unittest.TestCase):
|
||||
|
||||
return expected_height, expected_width
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class DetrImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class DetrImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = DetrImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -146,107 +159,6 @@ class DetrImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
|
||||
self.assertEqual(image_processor.do_pad, False)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
@slow
|
||||
def test_call_pytorch_with_coco_detection_annotations(self):
|
||||
# prepare image and target
|
||||
|
@ -21,7 +21,7 @@ import numpy as np
|
||||
from transformers.testing_utils import is_flaky, require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -78,10 +78,24 @@ class DonutImageProcessingTester(unittest.TestCase):
|
||||
"image_std": self.image_std,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class DonutImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class DonutImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = DonutImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -113,15 +127,12 @@ class DonutImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84))
|
||||
self.assertEqual(image_processor.size, {"height": 84, "width": 42})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
@is_flaky()
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
@ -154,7 +165,7 @@ class DonutImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
@ -187,7 +198,7 @@ class DonutImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.file_utils import is_torch_available, is_vision_available
|
||||
from transformers.file_utils import is_vision_available
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import DPTImageProcessor
|
||||
|
||||
|
||||
@ -70,10 +63,24 @@ class DPTImageProcessingTester(unittest.TestCase):
|
||||
"size": self.size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class DPTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class DPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = DPTImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -97,99 +104,3 @@ class DPTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import ViTImageProcessor
|
||||
|
||||
|
||||
@ -70,18 +63,32 @@ class EfficientFormerImageProcessorTester(unittest.TestCase):
|
||||
"size": self.size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class EfficientFormerImageProcessorTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class EfficientFormerImageProcessorTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = ViTImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
self.image_proc_tester = EfficientFormerImageProcessorTester(self)
|
||||
self.image_processor_tester = EfficientFormerImageProcessorTester(self)
|
||||
|
||||
@property
|
||||
def image_processor_dict(self):
|
||||
return self.image_proc_tester.prepare_image_processor_dict()
|
||||
return self.image_processor_tester.prepare_image_processor_dict()
|
||||
|
||||
def test_image_proc_properties(self):
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
@ -90,102 +97,3 @@ class EfficientFormerImageProcessorTest(ImageProcessingSavingTestMixin, unittest
|
||||
self.assertTrue(hasattr(image_processor, "do_normalize"))
|
||||
self.assertTrue(hasattr(image_processor, "do_resize"))
|
||||
self.assertTrue(hasattr(image_processor, "size"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_proc_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_proc_tester.num_channels,
|
||||
self.image_proc_tester.size["height"],
|
||||
self.image_proc_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_proc_tester.batch_size,
|
||||
self.image_proc_tester.num_channels,
|
||||
self.image_proc_tester.size["height"],
|
||||
self.image_proc_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_proc_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_proc_tester.num_channels,
|
||||
self.image_proc_tester.size["height"],
|
||||
self.image_proc_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_proc_tester.batch_size,
|
||||
self.image_proc_tester.num_channels,
|
||||
self.image_proc_tester.size["height"],
|
||||
self.image_proc_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_proc_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_proc_tester.num_channels,
|
||||
self.image_proc_tester.size["height"],
|
||||
self.image_proc_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_proc_tester.batch_size,
|
||||
self.image_proc_tester.num_channels,
|
||||
self.image_proc_tester.size["height"],
|
||||
self.image_proc_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -19,17 +19,12 @@ import unittest
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import EfficientNetImageProcessor
|
||||
|
||||
|
||||
@ -70,10 +65,24 @@ class EfficientNetImageProcessorTester(unittest.TestCase):
|
||||
"size": self.size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class EfficientNetImageProcessorTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class EfficientNetImageProcessorTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = EfficientNetImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -98,102 +107,6 @@ class EfficientNetImageProcessorTest(ImageProcessingSavingTestMixin, unittest.Te
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_rescale(self):
|
||||
# EfficientNet optionally rescales between -1 and 1 instead of the usual 0 and 1
|
||||
image = np.arange(0, 256, 1, dtype=np.uint8).reshape(1, 8, 32)
|
||||
|
@ -21,7 +21,7 @@ import numpy as np
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -156,10 +156,21 @@ class FlavaImageProcessingTester(unittest.TestCase):
|
||||
def get_expected_codebook_image_size(self):
|
||||
return (self.codebook_size["height"], self.codebook_size["width"])
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class FlavaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = FlavaImageProcessor if is_vision_available() else None
|
||||
maxDiff = None
|
||||
|
||||
@ -207,14 +218,11 @@ class FlavaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33})
|
||||
self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, PIL.Image.Image)
|
||||
|
||||
@ -252,7 +260,7 @@ class FlavaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, **prepare_kwargs)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, instance_class)
|
||||
|
||||
@ -336,7 +344,7 @@ class FlavaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
# Initialize image_processing
|
||||
random.seed(1234)
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt")
|
||||
@ -346,7 +354,7 @@ class FlavaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, PIL.Image.Image)
|
||||
|
||||
|
@ -21,7 +21,7 @@ import numpy as np
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -63,10 +63,33 @@ class GLPNImageProcessingTester(unittest.TestCase):
|
||||
"do_rescale": self.do_rescale,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
if isinstance(images[0], Image.Image):
|
||||
width, height = images[0].size
|
||||
else:
|
||||
height, width = images[0].shape[1], images[0].shape[2]
|
||||
|
||||
height = height // self.size_divisor * self.size_divisor
|
||||
width = width // self.size_divisor * self.size_divisor
|
||||
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
size_divisor=self.size_divisor,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class GLPNImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class GLPNImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = GLPNImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -83,44 +106,41 @@ class GLPNImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase)
|
||||
self.assertTrue(hasattr(image_processing, "resample"))
|
||||
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input (GLPNImageProcessor doesn't support batching)
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0)
|
||||
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
||||
self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input (GLPNImageProcessor doesn't support batching)
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0)
|
||||
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
||||
self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input (GLPNImageProcessor doesn't support batching)
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0)
|
||||
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
||||
self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
|
||||
|
@ -25,7 +25,7 @@ from datasets import load_dataset
|
||||
from transformers.testing_utils import require_torch, require_vision, slow
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -75,10 +75,24 @@ class ImageGPTImageProcessingTester(unittest.TestCase):
|
||||
"do_normalize": self.do_normalize,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return (self.size["height"] * self.size["width"],)
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class ImageGPTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class ImageGPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = ImageGPTImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -144,6 +158,68 @@ class ImageGPTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestC
|
||||
def test_init_without_params(self):
|
||||
pass
|
||||
|
||||
# Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images)
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
|
||||
self.assertEqual(
|
||||
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
||||
)
|
||||
|
||||
# Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images)
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
|
||||
self.assertEqual(
|
||||
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
||||
)
|
||||
|
||||
# Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
||||
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
|
||||
self.assertEqual(
|
||||
tuple(encoded_images.shape),
|
||||
(self.image_processor_tester.batch_size, *expected_output_image_shape),
|
||||
)
|
||||
|
||||
|
||||
def prepare_images():
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test")
|
||||
|
@ -16,17 +16,12 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_pytesseract, require_torch
|
||||
from transformers.utils import is_pytesseract_available, is_torch_available
|
||||
from transformers.utils import is_pytesseract_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_pytesseract_available():
|
||||
from PIL import Image
|
||||
|
||||
@ -60,10 +55,24 @@ class LayoutLMv2ImageProcessingTester(unittest.TestCase):
|
||||
def prepare_image_processor_dict(self):
|
||||
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_pytesseract
|
||||
class LayoutLMv2ImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class LayoutLMv2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = LayoutLMv2ImageProcessor if is_pytesseract_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -86,108 +95,6 @@ class LayoutLMv2ImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoding = image_processing(image_inputs[0], return_tensors="pt")
|
||||
self.assertEqual(
|
||||
encoding.pixel_values.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
self.assertIsInstance(encoding.words, list)
|
||||
self.assertIsInstance(encoding.boxes, list)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_layoutlmv2_integration_test(self):
|
||||
# with apply_OCR = True
|
||||
image_processing = LayoutLMv2ImageProcessor()
|
||||
|
@ -16,17 +16,12 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_pytesseract, require_torch
|
||||
from transformers.utils import is_pytesseract_available, is_torch_available
|
||||
from transformers.utils import is_pytesseract_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_pytesseract_available():
|
||||
from PIL import Image
|
||||
|
||||
@ -60,10 +55,24 @@ class LayoutLMv3ImageProcessingTester(unittest.TestCase):
|
||||
def prepare_image_processor_dict(self):
|
||||
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_pytesseract
|
||||
class LayoutLMv3ImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class LayoutLMv3ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = LayoutLMv3ImageProcessor if is_pytesseract_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -86,108 +95,6 @@ class LayoutLMv3ImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoding = image_processing(image_inputs[0], return_tensors="pt")
|
||||
self.assertEqual(
|
||||
encoding.pixel_values.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
self.assertIsInstance(encoding.words, list)
|
||||
self.assertIsInstance(encoding.boxes, list)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_LayoutLMv3_integration_test(self):
|
||||
# with apply_OCR = True
|
||||
image_processing = LayoutLMv3ImageProcessor()
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import LevitImageProcessor
|
||||
|
||||
|
||||
@ -77,10 +70,24 @@ class LevitImageProcessingTester(unittest.TestCase):
|
||||
"crop_size": self.crop_size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class LevitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class LevitImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = LevitImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -107,102 +114,3 @@ class LevitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -23,7 +23,7 @@ from huggingface_hub import hf_hub_download
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -127,10 +127,25 @@ class Mask2FormerImageProcessingTester(unittest.TestCase):
|
||||
masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)),
|
||||
)
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class Mask2FormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class Mask2FormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = Mask2FormerImageProcessor if (is_vision_available() and is_torch_available()) else None
|
||||
|
||||
def setUp(self):
|
||||
@ -161,107 +176,6 @@ class Mask2FormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
|
||||
self.assertEqual(image_processor.size_divisor, 8)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def comm_get_image_processing_inputs(
|
||||
self, with_segmentation_maps=False, is_instance_map=False, segmentation_type="np"
|
||||
):
|
||||
@ -270,7 +184,7 @@ class Mask2FormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
|
||||
num_labels = self.image_processor_tester.num_labels
|
||||
annotations = None
|
||||
instance_id_to_semantic_id = None
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
if with_segmentation_maps:
|
||||
high = num_labels
|
||||
if is_instance_map:
|
||||
@ -292,9 +206,6 @@ class Mask2FormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
|
||||
|
||||
return inputs
|
||||
|
||||
def test_init_without_params(self):
|
||||
pass
|
||||
|
||||
def test_with_size_divisor(self):
|
||||
size_divisors = [8, 16, 32]
|
||||
weird_input_sizes = [(407, 802), (582, 1094)]
|
||||
|
@ -23,7 +23,7 @@ from huggingface_hub import hf_hub_download
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -127,10 +127,25 @@ class MaskFormerImageProcessingTester(unittest.TestCase):
|
||||
masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)),
|
||||
)
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class MaskFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class MaskFormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = MaskFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
|
||||
|
||||
def setUp(self):
|
||||
@ -161,107 +176,6 @@ class MaskFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
|
||||
self.assertEqual(image_processor.size_divisor, 8)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def comm_get_image_processing_inputs(
|
||||
self, with_segmentation_maps=False, is_instance_map=False, segmentation_type="np"
|
||||
):
|
||||
@ -270,7 +184,7 @@ class MaskFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
num_labels = self.image_processor_tester.num_labels
|
||||
annotations = None
|
||||
instance_id_to_semantic_id = None
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
if with_segmentation_maps:
|
||||
high = num_labels
|
||||
if is_instance_map:
|
||||
@ -292,9 +206,6 @@ class MaskFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
|
||||
return inputs
|
||||
|
||||
def test_init_without_params(self):
|
||||
pass
|
||||
|
||||
def test_with_size_divisor(self):
|
||||
size_divisors = [8, 16, 32]
|
||||
weird_input_sizes = [(407, 802), (582, 1094)]
|
||||
|
@ -46,7 +46,7 @@ class MgpstrProcessorTest(unittest.TestCase):
|
||||
|
||||
@property
|
||||
def image_processor_dict(self):
|
||||
return self.image_processor_tester.prepare_image_processor_dict()
|
||||
return self.prepare_image_processor_dict()
|
||||
|
||||
def setUp(self):
|
||||
self.image_size = (3, 32, 128)
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import MobileNetV1ImageProcessor
|
||||
|
||||
|
||||
@ -68,10 +61,24 @@ class MobileNetV1ImageProcessingTester(unittest.TestCase):
|
||||
"crop_size": self.crop_size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class MobileNetV1ImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class MobileNetV1ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = MobileNetV1ImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -96,102 +103,3 @@ class MobileNetV1ImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import MobileNetV2ImageProcessor
|
||||
|
||||
|
||||
@ -68,10 +61,24 @@ class MobileNetV2ImageProcessingTester(unittest.TestCase):
|
||||
"crop_size": self.crop_size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class MobileNetV2ImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class MobileNetV2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = MobileNetV2ImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -96,102 +103,3 @@ class MobileNetV2ImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import MobileViTImageProcessor
|
||||
|
||||
|
||||
@ -71,10 +64,24 @@ class MobileViTImageProcessingTester(unittest.TestCase):
|
||||
"do_flip_channel_order": self.do_flip_channel_order,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class MobileViTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class MobileViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = MobileViTImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -100,102 +107,3 @@ class MobileViTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Test
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -23,7 +23,7 @@ from huggingface_hub import hf_hub_download
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -152,20 +152,35 @@ class OneFormerImageProcessorTester(unittest.TestCase):
|
||||
masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)),
|
||||
)
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class OneFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class OneFormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
|
||||
# only for test_image_processing_common.test_image_proc_to_json_string
|
||||
image_processing_class = image_processing_class
|
||||
|
||||
def setUp(self):
|
||||
self.image_processing_tester = OneFormerImageProcessorTester(self)
|
||||
self.image_processor_tester = OneFormerImageProcessorTester(self)
|
||||
|
||||
@property
|
||||
def image_processor_dict(self):
|
||||
return self.image_processing_tester.prepare_image_processor_dict()
|
||||
return self.image_processor_tester.prepare_image_processor_dict()
|
||||
|
||||
def test_image_proc_properties(self):
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
@ -181,120 +196,15 @@ class OneFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Test
|
||||
self.assertTrue(hasattr(image_processor, "metadata"))
|
||||
self.assertTrue(hasattr(image_processor, "do_reduce_labels"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processing_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processing_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processing_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processing_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processor(
|
||||
image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt"
|
||||
).pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processing_tester.batch_size,
|
||||
self.image_processing_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processing_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processing_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processing_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processing_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processor(
|
||||
image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt"
|
||||
).pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processing_tester.batch_size,
|
||||
self.image_processing_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processing_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processing_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processing_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processing_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processor(
|
||||
image_inputs, ["semantic"] * len(image_inputs), return_tensors="pt"
|
||||
).pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processing_tester.batch_size,
|
||||
self.image_processing_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def comm_get_image_processor_inputs(
|
||||
self, with_segmentation_maps=False, is_instance_map=False, segmentation_type="np"
|
||||
):
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# prepare image and target
|
||||
num_labels = self.image_processing_tester.num_labels
|
||||
num_labels = self.image_processor_tester.num_labels
|
||||
annotations = None
|
||||
instance_id_to_semantic_id = None
|
||||
image_inputs = prepare_image_inputs(self.image_processing_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
if with_segmentation_maps:
|
||||
high = num_labels
|
||||
if is_instance_map:
|
||||
@ -336,7 +246,7 @@ class OneFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Test
|
||||
self.assertEqual(mask_label.shape[0], class_label.shape[0])
|
||||
# this ensure padding has happened
|
||||
self.assertEqual(mask_label.shape[1:], pixel_values.shape[2:])
|
||||
self.assertEqual(len(text_input), self.image_processing_tester.num_text)
|
||||
self.assertEqual(len(text_input), self.image_processor_tester.num_text)
|
||||
|
||||
common()
|
||||
common(is_instance_map=True)
|
||||
@ -356,69 +266,69 @@ class OneFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Test
|
||||
|
||||
def test_post_process_semantic_segmentation(self):
|
||||
fature_extractor = self.image_processing_class(
|
||||
num_labels=self.image_processing_tester.num_classes,
|
||||
num_labels=self.image_processor_tester.num_classes,
|
||||
max_seq_length=77,
|
||||
task_seq_length=77,
|
||||
class_info_file="ade20k_panoptic.json",
|
||||
num_text=self.image_processing_tester.num_text,
|
||||
num_text=self.image_processor_tester.num_text,
|
||||
repo_path="shi-labs/oneformer_demo",
|
||||
)
|
||||
outputs = self.image_processing_tester.get_fake_oneformer_outputs()
|
||||
outputs = self.image_processor_tester.get_fake_oneformer_outputs()
|
||||
|
||||
segmentation = fature_extractor.post_process_semantic_segmentation(outputs)
|
||||
|
||||
self.assertEqual(len(segmentation), self.image_processing_tester.batch_size)
|
||||
self.assertEqual(len(segmentation), self.image_processor_tester.batch_size)
|
||||
self.assertEqual(
|
||||
segmentation[0].shape,
|
||||
(
|
||||
self.image_processing_tester.height,
|
||||
self.image_processing_tester.width,
|
||||
self.image_processor_tester.height,
|
||||
self.image_processor_tester.width,
|
||||
),
|
||||
)
|
||||
|
||||
target_sizes = [(1, 4) for i in range(self.image_processing_tester.batch_size)]
|
||||
target_sizes = [(1, 4) for i in range(self.image_processor_tester.batch_size)]
|
||||
segmentation = fature_extractor.post_process_semantic_segmentation(outputs, target_sizes=target_sizes)
|
||||
|
||||
self.assertEqual(segmentation[0].shape, target_sizes[0])
|
||||
|
||||
def test_post_process_instance_segmentation(self):
|
||||
image_processor = self.image_processing_class(
|
||||
num_labels=self.image_processing_tester.num_classes,
|
||||
num_labels=self.image_processor_tester.num_classes,
|
||||
max_seq_length=77,
|
||||
task_seq_length=77,
|
||||
class_info_file="ade20k_panoptic.json",
|
||||
num_text=self.image_processing_tester.num_text,
|
||||
num_text=self.image_processor_tester.num_text,
|
||||
repo_path="shi-labs/oneformer_demo",
|
||||
)
|
||||
outputs = self.image_processing_tester.get_fake_oneformer_outputs()
|
||||
outputs = self.image_processor_tester.get_fake_oneformer_outputs()
|
||||
segmentation = image_processor.post_process_instance_segmentation(outputs, threshold=0)
|
||||
|
||||
self.assertTrue(len(segmentation) == self.image_processing_tester.batch_size)
|
||||
self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size)
|
||||
for el in segmentation:
|
||||
self.assertTrue("segmentation" in el)
|
||||
self.assertTrue("segments_info" in el)
|
||||
self.assertEqual(type(el["segments_info"]), list)
|
||||
self.assertEqual(
|
||||
el["segmentation"].shape, (self.image_processing_tester.height, self.image_processing_tester.width)
|
||||
el["segmentation"].shape, (self.image_processor_tester.height, self.image_processor_tester.width)
|
||||
)
|
||||
|
||||
def test_post_process_panoptic_segmentation(self):
|
||||
image_processor = self.image_processing_class(
|
||||
num_labels=self.image_processing_tester.num_classes,
|
||||
num_labels=self.image_processor_tester.num_classes,
|
||||
max_seq_length=77,
|
||||
task_seq_length=77,
|
||||
class_info_file="ade20k_panoptic.json",
|
||||
num_text=self.image_processing_tester.num_text,
|
||||
num_text=self.image_processor_tester.num_text,
|
||||
repo_path="shi-labs/oneformer_demo",
|
||||
)
|
||||
outputs = self.image_processing_tester.get_fake_oneformer_outputs()
|
||||
outputs = self.image_processor_tester.get_fake_oneformer_outputs()
|
||||
segmentation = image_processor.post_process_panoptic_segmentation(outputs, threshold=0)
|
||||
|
||||
self.assertTrue(len(segmentation) == self.image_processing_tester.batch_size)
|
||||
self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size)
|
||||
for el in segmentation:
|
||||
self.assertTrue("segmentation" in el)
|
||||
self.assertTrue("segments_info" in el)
|
||||
self.assertEqual(type(el["segments_info"]), list)
|
||||
self.assertEqual(
|
||||
el["segmentation"].shape, (self.image_processing_tester.height, self.image_processing_tester.width)
|
||||
el["segmentation"].shape, (self.image_processor_tester.height, self.image_processor_tester.width)
|
||||
)
|
||||
|
@ -174,6 +174,17 @@ class OneFormerProcessorTester(unittest.TestCase):
|
||||
masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)),
|
||||
)
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
@ -203,7 +214,7 @@ class OneFormerProcessingTest(unittest.TestCase):
|
||||
# Initialize processor
|
||||
processor = self.processing_class(**self.processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.processing_tester, equal_resolution=False)
|
||||
image_inputs = self.processing_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
@ -255,7 +266,7 @@ class OneFormerProcessingTest(unittest.TestCase):
|
||||
# Initialize processor
|
||||
processor = self.processing_class(**self.processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.processing_tester, equal_resolution=False, numpify=True)
|
||||
image_inputs = self.processing_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
@ -307,7 +318,7 @@ class OneFormerProcessingTest(unittest.TestCase):
|
||||
# Initialize processor
|
||||
processor = self.processing_class(**self.processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.processing_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.processing_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
@ -361,7 +372,7 @@ class OneFormerProcessingTest(unittest.TestCase):
|
||||
num_labels = self.processing_tester.num_labels
|
||||
annotations = None
|
||||
instance_id_to_semantic_id = None
|
||||
image_inputs = prepare_image_inputs(self.processing_tester, equal_resolution=False)
|
||||
image_inputs = self.processing_tester.prepare_image_inputs(equal_resolution=False)
|
||||
if with_segmentation_maps:
|
||||
high = num_labels
|
||||
if is_instance_map:
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import OwlViTImageProcessor
|
||||
|
||||
|
||||
@ -78,10 +71,24 @@ class OwlViTImageProcessingTester(unittest.TestCase):
|
||||
"do_convert_rgb": self.do_convert_rgb,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class OwlViTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class OwlViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = OwlViTImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -110,100 +117,3 @@ class OwlViTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCas
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -22,7 +22,7 @@ import requests
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -73,6 +73,17 @@ class Pix2StructImageProcessingTester(unittest.TestCase):
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
||||
return raw_image
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@unittest.skipIf(
|
||||
not is_torch_greater_or_equal_than_1_11,
|
||||
@ -80,7 +91,7 @@ class Pix2StructImageProcessingTester(unittest.TestCase):
|
||||
)
|
||||
@require_torch
|
||||
@require_vision
|
||||
class Pix2StructImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class Pix2StructImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = Pix2StructImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -108,7 +119,7 @@ class Pix2StructImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
@ -141,7 +152,7 @@ class Pix2StructImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
@ -183,7 +194,7 @@ class Pix2StructImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
@ -215,7 +226,7 @@ class Pix2StructImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
@ -251,7 +262,7 @@ class Pix2StructImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
)
|
||||
@require_torch
|
||||
@require_vision
|
||||
class Pix2StructImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class Pix2StructImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = Pix2StructImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -267,11 +278,11 @@ class Pix2StructImageProcessingTestFourChannels(ImageProcessingSavingTestMixin,
|
||||
self.assertTrue(hasattr(image_processor, "do_normalize"))
|
||||
self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
|
||||
|
||||
def test_call_pil_four_channels(self):
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
@ -299,3 +310,11 @@ class Pix2StructImageProcessingTestFourChannels(ImageProcessingSavingTestMixin,
|
||||
encoded_images.shape,
|
||||
(self.image_processor_tester.batch_size, max_patch, expected_hidden_dim),
|
||||
)
|
||||
|
||||
@unittest.skip("Pix2StructImageProcessor does not support 4 channels yet") # FIXME Amy
|
||||
def test_call_numpy(self):
|
||||
return super().test_call_numpy()
|
||||
|
||||
@unittest.skip("Pix2StructImageProcessor does not support 4 channels yet") # FIXME Amy
|
||||
def test_call_pytorch(self):
|
||||
return super().test_call_torch()
|
||||
|
@ -15,20 +15,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import PoolFormerImageProcessor
|
||||
|
||||
|
||||
@ -74,10 +67,24 @@ class PoolFormerImageProcessingTester(unittest.TestCase):
|
||||
"image_std": self.image_std,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class PoolFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class PoolFormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = PoolFormerImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -104,103 +111,3 @@ class PoolFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import PvtImageProcessor
|
||||
|
||||
|
||||
@ -70,10 +63,24 @@ class PvtImageProcessingTester(unittest.TestCase):
|
||||
"size": self.size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class PvtImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class PvtImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = PvtImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -97,102 +104,3 @@ class PvtImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -16,13 +16,12 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
from datasets import load_dataset
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -72,6 +71,20 @@ class SegformerImageProcessingTester(unittest.TestCase):
|
||||
"do_reduce_labels": self.do_reduce_labels,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
def prepare_semantic_single_inputs():
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
|
||||
@ -95,7 +108,7 @@ def prepare_semantic_batch_inputs():
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class SegformerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class SegformerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = SegformerImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -123,110 +136,11 @@ class SegformerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Test
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
self.assertEqual(image_processor.do_reduce_labels, True)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_segmentation_maps(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
maps = []
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
@ -21,7 +21,7 @@ import numpy as np
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -67,40 +67,34 @@ class Swin2SRImageProcessingTester(unittest.TestCase):
|
||||
"pad_size": self.pad_size,
|
||||
}
|
||||
|
||||
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
||||
or a list of PyTorch tensors if one specifies torchify=True.
|
||||
"""
|
||||
def expected_output_image_shape(self, images):
|
||||
img = images[0]
|
||||
|
||||
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
||||
|
||||
if equal_resolution:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
image_inputs.append(
|
||||
np.random.randint(
|
||||
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
|
||||
)
|
||||
)
|
||||
if isinstance(img, Image.Image):
|
||||
input_width, input_height = img.size
|
||||
else:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
|
||||
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))
|
||||
input_height, input_width = img.shape[-2:]
|
||||
|
||||
if not numpify and not torchify:
|
||||
# PIL expects the channel dimension as last dimension
|
||||
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
||||
pad_height = (input_height // self.pad_size + 1) * self.pad_size - input_height
|
||||
pad_width = (input_width // self.pad_size + 1) * self.pad_size - input_width
|
||||
|
||||
if torchify:
|
||||
image_inputs = [torch.from_numpy(x) for x in image_inputs]
|
||||
return self.num_channels, input_height + pad_height, input_width + pad_width
|
||||
|
||||
return image_inputs
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class Swin2SRImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class Swin2SRImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = Swin2SRImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -117,9 +111,6 @@ class Swin2SRImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCa
|
||||
self.assertTrue(hasattr(image_processor, "do_pad"))
|
||||
self.assertTrue(hasattr(image_processor, "pad_size"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def calculate_expected_size(self, image):
|
||||
old_height, old_width = get_image_size(image)
|
||||
size = self.image_processor_tester.pad_size
|
||||
@ -128,65 +119,45 @@ class Swin2SRImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCa
|
||||
pad_width = (old_width // size + 1) * size - old_width
|
||||
return old_height + pad_height, old_width + pad_width
|
||||
|
||||
# Swin2SRImageProcessor does not support batched input
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_height, expected_width = self.calculate_expected_size(np.array(image_inputs[0]))
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
||||
# Swin2SRImageProcessor does not support batched input
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_height, expected_width = self.calculate_expected_size(image_inputs[0])
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
||||
# Swin2SRImageProcessor does not support batched input
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processor
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_height, expected_width = self.calculate_expected_size(image_inputs[0])
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
@ -21,7 +21,7 @@ import numpy as np
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -128,7 +128,7 @@ class TvltImageProcessorTester(unittest.TestCase):
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class TvltImageProcessorTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class TvltImageProcessorTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = TvltImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
|
@ -21,7 +21,7 @@ import numpy as np
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -77,10 +77,25 @@ class VideoMAEImageProcessingTester(unittest.TestCase):
|
||||
"crop_size": self.crop_size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_frames, self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_video_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_frames=self.num_frames,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class VideoMAEImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class VideoMAEImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = VideoMAEImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -108,110 +123,65 @@ class VideoMAEImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestC
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL videos
|
||||
video_inputs = prepare_video_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
|
||||
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
video_inputs = prepare_video_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
|
||||
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
video_inputs = prepare_video_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
|
||||
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
|
||||
)
|
||||
|
@ -16,17 +16,12 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
@ -113,10 +108,25 @@ class ViltImageProcessingTester(unittest.TestCase):
|
||||
|
||||
return expected_height, expected_width
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return (self.num_channels, height, width)
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class ViltImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class ViltImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = ViltImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -141,99 +151,3 @@ class ViltImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase)
|
||||
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
@ -16,20 +16,13 @@
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import ViTImageProcessor
|
||||
|
||||
|
||||
@ -70,10 +63,24 @@ class ViTImageProcessingTester(unittest.TestCase):
|
||||
"size": self.size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_channels, self.size["height"], self.size["width"]
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class ViTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class ViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = ViTImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -97,102 +104,3 @@ class ViTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
|
||||
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
||||
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.size["height"],
|
||||
self.image_processor_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
@ -21,7 +21,7 @@ import numpy as np
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -77,10 +77,25 @@ class VivitImageProcessingTester(unittest.TestCase):
|
||||
"crop_size": self.crop_size,
|
||||
}
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
return self.num_frames, self.num_channels, self.crop_size["height"], self.crop_size["width"]
|
||||
|
||||
def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_video_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
num_frames=self.num_frames,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class VivitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class VivitImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = VivitImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -108,111 +123,6 @@ class VivitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
||||
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL videos
|
||||
video_inputs = prepare_video_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
video_inputs = prepare_video_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
video_inputs = prepare_video_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
1,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_videos.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_frames,
|
||||
self.image_processor_tester.num_channels,
|
||||
self.image_processor_tester.crop_size["height"],
|
||||
self.image_processor_tester.crop_size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_rescale(self):
|
||||
# ViVit optionally rescales between -1 and 1 instead of the usual 0 and 1
|
||||
image = np.arange(0, 256, 1, dtype=np.uint8).reshape(1, 8, 32)
|
||||
@ -226,3 +136,66 @@ class VivitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
rescaled_image = image_processor.rescale(image, scale=1 / 255, offset=False)
|
||||
expected_image = (image / 255.0).astype(np.float32)
|
||||
self.assertTrue(np.allclose(rescaled_image, expected_image))
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL videos
|
||||
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
|
||||
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
|
||||
self.assertEqual(
|
||||
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
|
||||
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
|
||||
self.assertEqual(
|
||||
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
|
||||
for video in video_inputs:
|
||||
self.assertIsInstance(video, list)
|
||||
self.assertIsInstance(video[0], torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]])
|
||||
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
||||
expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos)
|
||||
self.assertEqual(
|
||||
tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape)
|
||||
)
|
||||
|
@ -18,12 +18,10 @@ import json
|
||||
import pathlib
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision, slow
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
|
||||
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@ -111,10 +109,25 @@ class YolosImageProcessingTester(unittest.TestCase):
|
||||
|
||||
return expected_height, expected_width
|
||||
|
||||
def expected_output_image_shape(self, images):
|
||||
height, width = self.get_expected_values(images, batched=True)
|
||||
return self.num_channels, height, width
|
||||
|
||||
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
return prepare_image_inputs(
|
||||
batch_size=self.batch_size,
|
||||
num_channels=self.num_channels,
|
||||
min_resolution=self.min_resolution,
|
||||
max_resolution=self.max_resolution,
|
||||
equal_resolution=equal_resolution,
|
||||
numpify=numpify,
|
||||
torchify=torchify,
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class YolosImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
||||
class YolosImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
image_processing_class = YolosImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
@ -143,113 +156,12 @@ class YolosImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase
|
||||
self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
|
||||
self.assertEqual(image_processor.do_pad, False)
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(1, self.image_processor_tester.num_channels, expected_height, expected_width),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
|
||||
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
|
||||
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.image_processor_tester.batch_size,
|
||||
self.image_processor_tester.num_channels,
|
||||
expected_height,
|
||||
expected_width,
|
||||
),
|
||||
)
|
||||
|
||||
def test_equivalence_padding(self):
|
||||
# Initialize image_processings
|
||||
image_processing_1 = self.image_processing_class(**self.image_processor_dict)
|
||||
image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
|
@ -29,7 +29,16 @@ if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
|
||||
def prepare_image_inputs(
|
||||
batch_size,
|
||||
min_resolution,
|
||||
max_resolution,
|
||||
num_channels,
|
||||
size_divisor=None,
|
||||
equal_resolution=False,
|
||||
numpify=False,
|
||||
torchify=False,
|
||||
):
|
||||
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
||||
or a list of PyTorch tensors if one specifies torchify=True.
|
||||
|
||||
@ -39,19 +48,16 @@ def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify
|
||||
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
||||
|
||||
image_inputs = []
|
||||
for i in range(image_processor_tester.batch_size):
|
||||
for i in range(batch_size):
|
||||
if equal_resolution:
|
||||
width = height = image_processor_tester.max_resolution
|
||||
width = height = max_resolution
|
||||
else:
|
||||
# To avoid getting image width/height 0
|
||||
min_resolution = image_processor_tester.min_resolution
|
||||
if getattr(image_processor_tester, "size_divisor", None):
|
||||
if size_divisor is not None:
|
||||
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
|
||||
min_resolution = max(image_processor_tester.size_divisor, min_resolution)
|
||||
width, height = np.random.choice(np.arange(min_resolution, image_processor_tester.max_resolution), 2)
|
||||
image_inputs.append(
|
||||
np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8)
|
||||
)
|
||||
min_resolution = max(size_divisor, min_resolution)
|
||||
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
|
||||
image_inputs.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
|
||||
|
||||
if not numpify and not torchify:
|
||||
# PIL expects the channel dimension as last dimension
|
||||
@ -63,12 +69,12 @@ def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify
|
||||
return image_inputs
|
||||
|
||||
|
||||
def prepare_video(image_processor_tester, width=10, height=10, numpify=False, torchify=False):
|
||||
def prepare_video(num_frames, num_channels, width=10, height=10, numpify=False, torchify=False):
|
||||
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
|
||||
|
||||
video = []
|
||||
for i in range(image_processor_tester.num_frames):
|
||||
video.append(np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8))
|
||||
for i in range(num_frames):
|
||||
video.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
|
||||
|
||||
if not numpify and not torchify:
|
||||
# PIL expects the channel dimension as last dimension
|
||||
@ -80,7 +86,16 @@ def prepare_video(image_processor_tester, width=10, height=10, numpify=False, to
|
||||
return video
|
||||
|
||||
|
||||
def prepare_video_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
|
||||
def prepare_video_inputs(
|
||||
batch_size,
|
||||
num_frames,
|
||||
num_channels,
|
||||
min_resolution,
|
||||
max_resolution,
|
||||
equal_resolution=False,
|
||||
numpify=False,
|
||||
torchify=False,
|
||||
):
|
||||
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
|
||||
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.
|
||||
|
||||
@ -90,15 +105,14 @@ def prepare_video_inputs(image_processor_tester, equal_resolution=False, numpify
|
||||
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
||||
|
||||
video_inputs = []
|
||||
for i in range(image_processor_tester.batch_size):
|
||||
for i in range(batch_size):
|
||||
if equal_resolution:
|
||||
width = height = image_processor_tester.max_resolution
|
||||
width = height = max_resolution
|
||||
else:
|
||||
width, height = np.random.choice(
|
||||
np.arange(image_processor_tester.min_resolution, image_processor_tester.max_resolution), 2
|
||||
)
|
||||
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
|
||||
video = prepare_video(
|
||||
image_processor_tester=image_processor_tester,
|
||||
num_frames=num_frames,
|
||||
num_channels=num_channels,
|
||||
width=width,
|
||||
height=height,
|
||||
numpify=numpify,
|
||||
@ -109,7 +123,7 @@ def prepare_video_inputs(image_processor_tester, equal_resolution=False, numpify
|
||||
return video_inputs
|
||||
|
||||
|
||||
class ImageProcessingSavingTestMixin:
|
||||
class ImageProcessingTestMixin:
|
||||
test_cast_dtype = None
|
||||
|
||||
def test_image_processor_to_json_string(self):
|
||||
@ -150,7 +164,7 @@ class ImageProcessingSavingTestMixin:
|
||||
image_processor = self.image_processing_class(**self.image_processor_dict)
|
||||
|
||||
# create random PyTorch tensors
|
||||
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
|
||||
encoding = image_processor(image_inputs, return_tensors="pt")
|
||||
# for layoutLM compatiblity
|
||||
@ -176,3 +190,65 @@ class ImageProcessingSavingTestMixin:
|
||||
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
||||
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
|
||||
self.assertEqual(encoding.input_ids.dtype, torch.long)
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
||||
self.assertEqual(
|
||||
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
||||
# Test batched
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
||||
self.assertEqual(
|
||||
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize image_processing
|
||||
image_processing = self.image_processing_class(**self.image_processor_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
||||
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
||||
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
||||
|
||||
# Test batched
|
||||
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
||||
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
tuple(encoded_images.shape),
|
||||
(self.image_processor_tester.batch_size, *expected_output_image_shape),
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user