* Adding `top_k` and `sort` arguments to `text-classification` pipeline.
- Deprecate `return_all_scores` as `top_k` is more uniform with other
pipelines, and a superset of what `return_all_scores` can do.
BC is maintained though.
`return_all_scores=True` -> `top_k=None`
`return_all_scores=False` -> `top_k=1`
- Using `top_k` will imply sorting the results, but using no argument
will keep the results unsorted for backward compatibility.
* Remove `sort`.
* Fixing the test.
* Remove bad doc.
* [BC] Fixing usage of text pairs
The BC is actually preventing users from misusing the pipeline since
users could have been willing to send text pairs and the pipeline would
instead understand the thing as a batch returning bogus results.
The correct usage of text pairs is preserved in this PR even when that
makes the code clunky.
Adds support for {"text":..,, "text_pair": ...} inputs for both dataset
iteration and more explicit usage to pairs.
* Updating the doc.
* Update src/transformers/pipelines/text_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/pipelines/text_classification.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/pipelines/test_pipelines_text_classification.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* quality.
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>