transformers/tests/pipelines/test_pipelines_text_classification.py
Nicolas Patry a4386d7e40
[BC] Fixing usage of text pairs (#17324)
* [BC] Fixing usage of text pairs

The BC is actually preventing users from misusing the pipeline since
users could have been willing to send text pairs and the pipeline would
instead understand the thing as a batch returning bogus results.

The correct usage of text pairs is preserved in this PR even when that
makes the code clunky.

Adds support for {"text":..,, "text_pair": ...} inputs for both dataset
iteration and more explicit usage to pairs.

* Updating the doc.

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_text_classification.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* quality.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-05-19 10:29:16 +02:00

135 lines
5.7 KiB
Python

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY, PipelineTestCaseMeta
@is_pipeline_test
class TextClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
@require_torch
def test_small_model_pt(self):
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
@require_torch
def test_accepts_torch_device(self):
import torch
text_classifier = pipeline(
task="text-classification",
model="hf-internal-testing/tiny-random-distilbert",
framework="pt",
device=torch.device("cpu"),
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
@require_tf
def test_small_model_tf(self):
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
@slow
@require_torch
def test_pt_bert(self):
text_classifier = pipeline("text-classification")
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
outputs = text_classifier("This is bad !")
self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
outputs = text_classifier("Birds are a type of animal")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])
@slow
@require_tf
def test_tf_bert(self):
text_classifier = pipeline("text-classification", framework="tf")
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 1.0}])
outputs = text_classifier("This is bad !")
self.assertEqual(nested_simplify(outputs), [{"label": "NEGATIVE", "score": 1.0}])
outputs = text_classifier("Birds are a type of animal")
self.assertEqual(nested_simplify(outputs), [{"label": "POSITIVE", "score": 0.988}])
def get_test_pipeline(self, model, tokenizer, feature_extractor):
text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
return text_classifier, ["HuggingFace is in", "This is another test"]
def run_pipeline_test(self, text_classifier, _):
model = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
valid_inputs = "HuggingFace is in"
outputs = text_classifier(valid_inputs)
self.assertEqual(nested_simplify(outputs), [{"label": ANY(str), "score": ANY(float)}])
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
valid_inputs = ["HuggingFace is in ", "Paris is in France"]
outputs = text_classifier(valid_inputs)
self.assertEqual(
nested_simplify(outputs),
[{"label": ANY(str), "score": ANY(float)}, {"label": ANY(str), "score": ANY(float)}],
)
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
self.assertTrue(outputs[1]["label"] in model.config.id2label.values())
valid_inputs = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"}
outputs = text_classifier(valid_inputs)
self.assertEqual(
nested_simplify(outputs),
{"label": ANY(str), "score": ANY(float)},
)
self.assertTrue(outputs["label"] in model.config.id2label.values())
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
invalid_input = [["HuggingFace is in ", "Paris is in France"]]
with self.assertRaises(ValueError):
text_classifier(invalid_input)
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
outputs = text_classifier([[["HuggingFace is in ", "Paris is in France"]]])
self.assertEqual(
nested_simplify(outputs),
[{"label": ANY(str), "score": ANY(float)}],
)
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())