Adding top_k argument to text-classification pipeline. (#17606)

* Adding `top_k` and `sort` arguments to `text-classification` pipeline.

- Deprecate `return_all_scores` as `top_k` is more uniform with other
  pipelines, and a superset of what `return_all_scores` can do.
  BC is maintained though.
  `return_all_scores=True` -> `top_k=None`
  `return_all_scores=False` -> `top_k=1`

- Using `top_k` will imply sorting the results, but using no argument
  will keep the results unsorted for backward compatibility.

* Remove `sort`.

* Fixing the test.

* Remove bad doc.
This commit is contained in:
Nicolas Patry 2022-06-09 18:33:10 +02:00 committed by GitHub
parent 29080643eb
commit 2351729f7d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 63 additions and 11 deletions

View File

@ -1,3 +1,4 @@
import warnings
from typing import Dict
import numpy as np
@ -72,15 +73,26 @@ class TextClassificationPipeline(Pipeline):
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
)
def _sanitize_parameters(self, return_all_scores=None, function_to_apply=None, **tokenizer_kwargs):
def _sanitize_parameters(self, return_all_scores=None, function_to_apply=None, top_k="", **tokenizer_kwargs):
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
preprocess_params = tokenizer_kwargs
postprocess_params = {}
if hasattr(self.model.config, "return_all_scores") and return_all_scores is None:
return_all_scores = self.model.config.return_all_scores
if return_all_scores is not None:
postprocess_params["return_all_scores"] = return_all_scores
if isinstance(top_k, int) or top_k is None:
postprocess_params["top_k"] = top_k
postprocess_params["_legacy"] = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, use `top_k=1` if you want similar functionnality", UserWarning
)
if return_all_scores:
postprocess_params["top_k"] = None
else:
postprocess_params["top_k"] = 1
if isinstance(function_to_apply, str):
function_to_apply = ClassificationFunction[function_to_apply.upper()]
@ -97,8 +109,8 @@ class TextClassificationPipeline(Pipeline):
args (`str` or `List[str]` or `Dict[str]`, or `List[Dict[str]]`):
One or several texts to classify. In order to use text pairs for your classification, you can send a
dictionnary containing `{"text", "text_pair"}` keys, or a list of those.
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return scores for all labels.
top_k (`int`, *optional*, defaults to `1`):
How many results to return.
function_to_apply (`str`, *optional*, defaults to `"default"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different
values:
@ -121,10 +133,10 @@ class TextClassificationPipeline(Pipeline):
- **label** (`str`) -- The label predicted.
- **score** (`float`) -- The corresponding probability.
If `self.return_all_scores=True`, one such dictionary is returned per label.
If `top_k` is used, one such dictionary is returned per label.
"""
result = super().__call__(*args, **kwargs)
if isinstance(args[0], str):
if isinstance(args[0], str) and isinstance(result, dict):
# This pipeline is odd, and return a list when single item is run
return [result]
else:
@ -150,7 +162,10 @@ class TextClassificationPipeline(Pipeline):
def _forward(self, model_inputs):
return self.model(**model_inputs)
def postprocess(self, model_outputs, function_to_apply=None, return_all_scores=False):
def postprocess(self, model_outputs, function_to_apply=None, top_k=1, _legacy=True):
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
@ -174,7 +189,14 @@ class TextClassificationPipeline(Pipeline):
else:
raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}")
if return_all_scores:
return [{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores)]
else:
if top_k == 1 and _legacy:
return {"label": self.model.config.id2label[scores.argmax().item()], "score": scores.max().item()}
dict_scores = [
{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores)
]
if not _legacy:
dict_scores.sort(key=lambda x: x["score"], reverse=True)
if top_k is not None:
dict_scores = dict_scores[:top_k]
return dict_scores

View File

@ -39,6 +39,27 @@ class TextClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestC
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
outputs = text_classifier("This is great !", top_k=2)
self.assertEqual(
nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]
)
outputs = text_classifier(["This is great !", "This is bad"], top_k=2)
self.assertEqual(
nested_simplify(outputs),
[
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}],
],
)
outputs = text_classifier("This is great !", top_k=1)
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
# Legacy behavior
outputs = text_classifier("This is great !", return_all_scores=False)
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
@require_torch
def test_accepts_torch_device(self):
import torch
@ -108,6 +129,15 @@ class TextClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestC
self.assertTrue(outputs[0]["label"] in model.config.id2label.values())
self.assertTrue(outputs[1]["label"] in model.config.id2label.values())
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
outputs = text_classifier(valid_inputs, top_k=None)
N = len(model.config.id2label.values())
self.assertEqual(
nested_simplify(outputs),
[[{"label": ANY(str), "score": ANY(float)}] * N, [{"label": ANY(str), "score": ANY(float)}] * N],
)
valid_inputs = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"}
outputs = text_classifier(valid_inputs)
self.assertEqual(