mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Accepting real pytorch device as arguments. (#17318)
* Accepting real pytorch device as arguments. * is_torch_available.
This commit is contained in:
parent
1c9d1f4ca8
commit
2cb2ea3fa1
@ -693,7 +693,7 @@ PIPELINE_INIT_ARGS = r"""
|
||||
Reference to the object in charge of parsing supplied pipeline parameters.
|
||||
device (`int`, *optional*, defaults to -1):
|
||||
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on
|
||||
the associated CUDA device id.
|
||||
the associated CUDA device id. You can pass native `torch.device` too.
|
||||
binary_output (`bool`, *optional*, defaults to `False`):
|
||||
Flag indicating if the output the pipeline should happen in a binary format (i.e., pickle) or as raw text.
|
||||
"""
|
||||
@ -750,7 +750,10 @@ class Pipeline(_ScikitCompat):
|
||||
self.feature_extractor = feature_extractor
|
||||
self.modelcard = modelcard
|
||||
self.framework = framework
|
||||
self.device = device if framework == "tf" else torch.device("cpu" if device < 0 else f"cuda:{device}")
|
||||
if is_torch_available() and isinstance(device, torch.device):
|
||||
self.device = device
|
||||
else:
|
||||
self.device = device if framework == "tf" else torch.device("cpu" if device < 0 else f"cuda:{device}")
|
||||
self.binary_output = binary_output
|
||||
|
||||
# Special handling
|
||||
|
@ -39,6 +39,20 @@ class TextClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestC
|
||||
outputs = text_classifier("This is great !")
|
||||
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
|
||||
|
||||
@require_torch
|
||||
def test_accepts_torch_device(self):
|
||||
import torch
|
||||
|
||||
text_classifier = pipeline(
|
||||
task="text-classification",
|
||||
model="hf-internal-testing/tiny-random-distilbert",
|
||||
framework="pt",
|
||||
device=torch.device("cpu"),
|
||||
)
|
||||
|
||||
outputs = text_classifier("This is great !")
|
||||
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_0", "score": 0.504}])
|
||||
|
||||
@require_tf
|
||||
def test_small_model_tf(self):
|
||||
text_classifier = pipeline(
|
||||
|
Loading…
Reference in New Issue
Block a user