* docs: add example for separating q, k, v projections in SAM
* docs: How to Hack Any Transformers Model
* docs: remove changes from sam model docs
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Initial commit for MyT5 model
* custom implementation of MyT5 tokenizer, unused files deleted
* unittest for myt5 tokenizer
* upadate of import structure and style
* removed remmanents of MyT5Config
* fixed docstrings
* Updates after review: filled documentaion file, new docstrings and tests added
* Fixed code style issues
* fixed copied from to refer to function
* updated loading myt5 tokenizer in tests, added sample byte map file to fixtures
* changes after review
* removed redundant copied from
* removed redundant copied from
* optimalization and loading model from hf
* [run_slow] myt5
* [run-slow] myt5
* Updated en documentation for myt5
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* onboard phimoe model
* removed debug code
* added unit tests
* updated docs
* formatted
* fixed unit tests
* fixed test case
* fixed format
* refactored code
* fixed expected outputs in the integration tests
* Added a warning msg
* Addressed comments
* Addressed comments
* fixed test cases
* added paper link
* Addressed comments
* Refactored PhimoeForCausalLM forward fn
* Refactored PhimoeRotaryEmbedding class
* fixed test cases
* fixed testcase
* fixed test case
* Addressed comments
* fixed test cases
* fixed testcases
* Used cache position instead to get the seq len
* Trainer - deprecate tokenizer for processing_class
* Extend chage across Seq2Seq trainer and docs
* Add tests
* Update to FutureWarning and add deprecation version
Update siglip.md
This was already partially fixed relative to the deployed docs. But the partial fix made it inconsistent. Additionally, giving the full text ("This is a photo of...") is likely not the desired output.
* Add Idefics 3!
* fixes to make both pipelines identical
* fix for quantized models
* First pass at the review
* remove vocab size from the main config (it's still in the text_config)
* hot fix for merve
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* re-add model_type for text_config
* remove support for old_cache
* remove hidden_size from main config
* rename idefics3 HF repo
* few changes suggested in the PR
* fix to input_data_format computation
* remove overwrite of _autoset_attn_implementation following @zucchini-nlp suggestion
* improve example
* few improvements from amy's review
* big change to enable processing input images as numpy arrays
* Changes to the code to uniformize processor kwargs
* image processing tests
* image processing tests fixes and some bugs they discovered
* addressed review comments from Yoni
* fix modeling tests
* remove special tokens that are not special
* fixes tests
* skip failing tests - they also fail for idefics2
* added paper and readded the tests with multi gpu, who knows
* Update docs/source/en/model_doc/idefics3.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* review amy until image_processing_idefics3
* last comments from Amy
* review amy
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/modeling_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/model_doc/idefics3.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* doc improvement - amy review
* fix runtime error during fine-tuning
* amy's review
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/modeling_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* ruff
* amy's comment on the order
* ruff ruff
* fix copies
* square images when they are not splitted
* ruff :(
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics3/test_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix small bug introduced in refactor
* amy's image processing changes
* fixes peft tests and ruff
* modify to_pil_image from transformers. and review from emanuele.
* add modified to_pil_image
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* enable cpu bnb path
* fix style
* fix code style
* fix 4 bit path
* Update src/transformers/utils/import_utils.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* add multi backend refactor tests
* fix style
* tweak 4bit quantizer + fix corresponding tests
* tweak 8bit quantizer + *try* fixing corresponding tests
* fix dequant bnb 8bit
* account for Intel CPU in variability of expected outputs
* enable cpu and xpu device map
* further tweaks to account for Intel CPU
* fix autocast to work with both cpu + cuda
* fix comments
* fix comments
* switch to testing_utils.torch_device
* allow for xpu in multi-gpu tests
* fix tests 4bit for CPU NF4
* fix bug with is_torch_xpu_available needing to be called as func
* avoid issue where test reports attr err due to other failure
* fix formatting
* fix typo from resolving of merge conflict
* polish based on last PR review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix CI
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix error log
* fix error msg
* add \n in error log
* make quality
* rm bnb cuda restriction in doc
* cpu model don't need dispatch
* fix doc
* fix style
* check cuda avaliable in testing
* fix tests
* Update docs/source/en/model_doc/chameleon.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update docs/source/en/model_doc/llava_next.md
Co-authored-by: Aarni Koskela <akx@iki.fi>
* Update tests/quantization/bnb/test_4bit.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* Update tests/quantization/bnb/test_4bit.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* fix doc
* fix check multibackends
* fix import sort
* remove check torch in bnb
* docs: update bitsandbytes references with multi-backend info
* docs: fix small mistakes in bnb paragraph
* run formatting
* reveret bnb check
* move bnb multi-backend check to import_utils
* Update src/transformers/utils/import_utils.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* fix bnb check
* minor fix for bnb
* check lib first
* fix code style
* Revert "run formatting"
This reverts commit ac108c6d6b.
* fix format
* give warning when bnb version is low and no cuda found]
* fix device assignment check to be multi-device capable
* address akx feedback on get_avlbl_dev fn
* revert partially, as we don't want the function that public, as docs would be too much (enforced)
---------
Co-authored-by: Aarni Koskela <akx@iki.fi>
Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* clean mimi commit
* some nits suggestions from Arthur
* make fixup
* rename repo id + change readme
* Update docs/source/en/model_doc/mimi.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add flaky flag to batching equivalence due to audio_codes failing sometimes
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* initial commit
* gloups
* updates
* work
* weights match
* nits
* nits
* updates to support the tokenizer :)
* updates
* Pixtral processor (#33454)
* rough outline
* Add in image break and end tokens
* Fix
* Udo some formatting changes
* Set patch_size default
* Fix
* Fix token expansion
* nit in conversion script
* Fix image token list creation
* done
* add expected results
* Process list of list of images (#33465)
* updates
* working image and processor
* this is the expected format
* some fixes
* push current updated
* working mult images!
* add a small integration test
* Uodate configuration docstring
* Formatting
* Config docstring fix
* simplify model test
* fixup modeling and etests
* Return BatchMixFeature in image processor
* fix some copies
* update
* nits
* Update model docstring
* Apply suggestions from code review
* Fix up
* updates
* revert modeling changes
* update
* update
* fix load safe
* addd liscence
* update
* use pixel_values as required by the model
* skip some tests and refactor
* Add pixtral image processing tests (#33476)
* Image processing tests
* Add processing tests
* woops
* defaults reflect pixtral image processor
* fixup post merge
* images -> pixel values
* oups sorry Mr docbuilder
* isort
* fix
* fix processor tests
* small fixes
* nit
* update
* last nits
* oups this was really breaking!
* nits
* is composition needs to be true
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fixed typo: insted to instead
* Fixed typo: relase to release
* Fixed typo: nighlty to nightly
* Fixed typos: versatible, benchamarks, becnhmark to versatile, benchmark, benchmarks
* Fixed typo in comment: quantizd to quantized
* Fixed typo: architecutre to architecture
* Fixed typo: contibution to contribution
* Fixed typo: Presequities to Prerequisites
* Fixed typo: faste to faster
* Fixed typo: extendeding to extending
* Fixed typo: segmetantion_maps to segmentation_maps
* Fixed typo: Alternativelly to Alternatively
* Fixed incorrectly defined variable: output to output_disabled
* Fixed typo in library name: tranformers.onnx to transformers.onnx
* Fixed missing import: import tensorflow as tf
* Fixed incorrectly defined variable: token_tensor to tokens_tensor
* Fixed missing import: import torch
* Fixed incorrectly defined variable and typo: uromaize to uromanize
* Fixed incorrectly defined variable and typo: uromaize to uromanize
* Fixed typo in function args: numpy.ndarry to numpy.ndarray
* Fixed Inconsistent Library Name: Torchscript to TorchScript
* Fixed Inconsistent Class Name: OneformerProcessor to OneFormerProcessor
* Fixed Inconsistent Class Named Typo: TFLNetForMultipleChoice to TFXLNetForMultipleChoice
* Fixed Inconsistent Library Name Typo: Pytorch to PyTorch
* Fixed Inconsistent Function Name Typo: captureWarning to captureWarnings
* Fixed Inconsistent Library Name Typo: Pytorch to PyTorch
* Fixed Inconsistent Class Name Typo: TrainingArgument to TrainingArguments
* Fixed Inconsistent Model Name Typo: Swin2R to Swin2SR
* Fixed Inconsistent Model Name Typo: EART to BERT
* Fixed Inconsistent Library Name Typo: TensorFLow to TensorFlow
* Fixed Broken Link for Speech Emotion Classification with Wav2Vec2
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed minor missing word Typo
* Fixed Punctuation: Two commas
* Fixed Punctuation: No Space between XLM-R and is
* Fixed Punctuation: No Space between [~accelerate.Accelerator.backward] and method
* Added backticks to display model.fit() in codeblock
* Added backticks to display openai-community/gpt2 in codeblock
* Fixed Minor Typo: will to with
* Fixed Minor Typo: is to are
* Fixed Minor Typo: in to on
* Fixed Minor Typo: inhibits to exhibits
* Fixed Minor Typo: they need to it needs
* Fixed Minor Typo: cast the load the checkpoints To load the checkpoints
* Fixed Inconsistent Class Name Typo: TFCamembertForCasualLM to TFCamembertForCausalLM
* Fixed typo in attribute name: outputs.last_hidden_states to outputs.last_hidden_state
* Added missing verbosity level: fatal
* Fixed Minor Typo: take To takes
* Fixed Minor Typo: heuristic To heuristics
* Fixed Minor Typo: setting To settings
* Fixed Minor Typo: Content To Contents
* Fixed Minor Typo: millions To million
* Fixed Minor Typo: difference To differences
* Fixed Minor Typo: while extract To which extracts
* Fixed Minor Typo: Hereby To Here
* Fixed Minor Typo: addition To additional
* Fixed Minor Typo: supports To supported
* Fixed Minor Typo: so that benchmark results TO as a consequence, benchmark
* Fixed Minor Typo: a To an
* Fixed Minor Typo: a To an
* Fixed Minor Typo: Chain-of-though To Chain-of-thought
* add Blip2ForImageTextRetrieval
* use one line and remove unnecessary space in tests
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* use value from the config, rather than hardcoded
* change order of params in Blip2QFormerModel.forward
* update docstring
* fix style
* update test_inference_opt
* move embeddings out of Blip2QFormerModel
* remove from_vision_qformer_configs
* remove autocast float16 in Blip2QFormerModel
* rename fiels into vision_projection,text_projection,use_image_text_matching_head
* use CLIPOutput for Blip2ImageTextMatchingModelOutput
* remove past_key_values_length from Blip2TextEmbeddings
* fix small typo in the CLIPOutput docstring
* add Blip2ForImageTextRetrieval to Zero Shot Image Classification mapping
* update docstring and add require_torch_fp16
* rollback test_inference_opt
* use use_image_text_matching_head=True in convert
* skip test_model_get_set_embeddings
* fix create_rename_keys error on new itm fields
* revert to do scale after dot product between "query" and "key"
* fix ValueError on convert script for blip2-opt-2.7b
* update org of paths to Salesforce
* add is_pipeline_test_to_skip for VisualQuestionAnsweringPipelineTests
* [run_slow] blip_2
* removed Blip2ForImageTextRetrieval from IGNORE_NON_AUTO_CONFIGURED
* fix docstring of Blip2ImageTextMatchingModelOutput
* [run_slow] blip_2
* fix multi-gpu tests
* [run_slow] blip_2
* [run_slow] blip_2
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add changes for uroman package to handle non-Roman characters
* Update docs for uroman changes
* Modifying error message to warning, for backward compatibility
* Update instruction for user to install uroman
* Update docs for uroman python version dependency and backward compatibility
* Update warning message for python version compatibility with uroman
* Refine docs
* Fix: fix all model_type of Llava-Next-Video to llava_next_video
* Fix doc for llava_next_video
* * Fix formatting issues
* Change llava-next-video.md file name into llava_next_video.md to make it compatible with implementation
* Fix docs TOC for llava-next-video
* add new model like
* draft cuda forward - mismatched keys (sharding on conv1)
* match keys successfully
* fix split
* get generation/forward running (wrong gens, norm?)
* :update
* some refactoring
* fixes
* works up until copy to cache
* fix
* update
* NON WORKING VERSION
* version that work?
* nit
* fix config
* fix conversion script
* working cuda forward
* nit
* update
* simplifcation
* make mamba slow simple work
* no einops
* todo
* fix style
* no einops
* update fix no einsum
* nit
* remove einops
* bug: scan_output differs strongly
* add rms norm option
* fix fast + slow generation with and w/o cache ✔️
* draft integration tests
* remove a big chunk of the einsum
* fix slow, fast generations, without any einsum
* fix copies
* fix structure
* fix up modeling and tests
* fix tests
* clamping is indeed worse
* recover mamba2 cache test
* fix copies
* no cache position (yet)
* fix tf tests
* fix matmul for generate
* fixup
* skip cache tests for now
* [run-slow]mamba2
* tune out hidden states for padding
* test batched generation
* propagate attention mask changes
* fix past length
* fix integration test
* style
* address comments
* update readme
* add mamba2 version check
* fix tests
* [run-slow]mamba2
* skip edge tests
* [run-slow]mamba2
* last fixup
* [run-slow]mamba2
* update README
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
* Add llama3-llava-next-8b to llava_next conversion script
Adds support for the lmms-lab/llama3-llava-next-8b model to the
convert_llava_next_weights_to_hf.py script, along with an example
prompt generated from the llava_llama_3 conv_template in the LLaVA-NeXT
repo.
* Exclude <|begin_of_text|> from prompt example
This token gets added automatically, so it should not be included in the
prompt example.
* Add llava-next-72b and llava-next-110b
Adds the Qwen-based LLaVA-Next models to the conversion script, along
with changes to load the models on multiple GPUs for inference.
* Add llama3 and qwen prompt formats to docs
* Chat prompt and padding side left for llama3 batched
* update
* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove code
* better naming
---------
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* minor edits and clarifications
* address comment
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Add siglip loss function
* Update docs
* Enable training tests
[experimental] enable GC training tests as it has worked for my own data
* Remove test_training* overrides to enable training tests
[run_slow] siglip
* Skip training tests for Siglip text model and ImageClassificationModel
[run_slow] siglip
* Skip GC training tests for SiglipForImageClassification
* Explicitly skip training tests for SiglipVisionModel
Add skip reason for training tests for SiglipTextModel
* Remove copied from to fix CI
* Fix documentation for Gemma2.
Model sizes and Blog post URL are wrong in the documentation.
* Update docs/source/en/model_doc/gemma2.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* squash into single commit
* run diff once more
* docstring
* tests
* minor chnages and ready to go
* Update src/transformers/models/llava_next_video/processing_llava_next_video.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/vipllava/test_modeling_vipllava.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [run-slow] llava-next-video
* [run-slow] llava-next-video
* [run-slow] llava_next_video
* fix two tests
* fix slow tests
* remove logit checks due to numeric errors
* run test once more
* [run-slow] llava_next_video
* final try to pass the test
* [run-slow] llava_next_video
* [run-slow] llava_next_video
* [run-slow] llava_next_video
* style
* fix
* style
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* starting support for sdpa in `gptneox` models
* small comment on tests
* fix dropout
* documentation and style
* clarify concrete paths for reference
* generalise attn projections and rope application
added head mask check to sdpa mask creation
handle sdpa memory backend bug via own version flag
* update docs and style
* move dtype casting outside of general attn_projection_and_rope function
fix flash_attn_2 stuff
* more generic attn warning if output_attns or head_mask
* simplify head mask check by moving head mask creation to a later point
* remove copied llama artifact
* remove padding_mask from attention function signature
* removing unnecessary comments, only "save" attn implementation once
* [run_slow] gpt_neox
* Draft fast image processors
* Draft working fast version
* py3.8 compatible cache
* Enable loading fast image processors through auto
* Tidy up; rescale behaviour based on input type
* Enable tests for fast image processors
* Smarter rescaling
* Don't default to Fast
* Safer imports
* Add necessary Pillow requirement
* Woops
* Add AutoImageProcessor test
* Fix up
* Fix test for imagegpt
* Fix test
* Review comments
* Add warning for TF and JAX input types
* Rearrange
* Return transforms
* NumpyToTensor transformation
* Rebase - include changes from upstream in ImageProcessingMixin
* Safe typing
* Fix up
* convert mean/std to tesnor to rescale
* Don't store transforms in state
* Fix up
* Update src/transformers/image_processing_utils_fast.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/image_processing_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Warn if fast image processor available
* Update src/transformers/models/vit/image_processing_vit_fast.py
* Transpose incoming numpy images to be in CHW format
* Update mapping names based on packages, auto set fast to None
* Fix up
* Fix
* Add AutoImageProcessor.from_pretrained(checkpoint, use_fast=True) test
* Update src/transformers/models/vit/image_processing_vit_fast.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Add equivalence and speed tests
* Fix up
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
`mask` variable is not defined. probably a writing mistake. it should be `segmentation_map`. `segmentation_map` should be a `1` channel image rather than `RGB`.
[on a different note, the `mask_url` is the same as `raw_image`. could provide a better example.
* Add MistralForTokenClassification
* Add tests and docs
* Add token classification for Mixtral and Qwen2
* Save llma for token classification draft
* Add token classification support for Llama, Gemma, Persimmon, StableLm and StarCoder2
* Formatting
* Add token classification support for Qwen2Moe model
* Add dropout layer to each ForTokenClassification model
* Add copied from in tests
* Update src/transformers/models/llama/modeling_llama.py
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Propagate suggested changes
* Style
---------
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
* Initial commit
* Just a copy of modeling_idefics.py that will be ported to TF
* - Prepend TF to the name of all classes
- Convert pytorch ops to TF (not all operations are converted yet)
* Add TF imports
* Add autotranslated files
* Add TF classes to model_tf_auto.py
* Add the TF classes in model_doc
* include auto-translated code
* Adopted from auto-translated version
* Add a forgotten super().build
* Add test code for TF version.
* Fix indentation and load pytorch weights for now
* Some fixes. Many tests are still failing but some are passing now.
- I have added TODO's for some of the hacks I made to unblock me
and I will address them soon
- I have the processing_idefics.py hacked in my view to support TF temporarily
* Add ALL_LAYERNORM_LAYERS to match pytorch
* Revert "Add ALL_LAYERNORM_LAYERS to match pytorch"
This reverts commit 7e0a35119b4d7a6284d04d8c543fba1b29e573c9 as it
is not needed in the tf implementation.
* Fix freeze_relevant_params()
* Some more fixes
* Fix test_attention_outputs
* Add tf stuff to processing_idefics.py
processing_idefics.py supports both pytorch and tf now.
test_processor_idefics.py for pytorch is passing, so i didn't break anything
but still some issues with tf. I also need to add tf tests in
test_processor_idefics.py.
* Pass return_tensors to image processing code and fix test
* Pass return_tensors to the image processor __init__
* Fix several test cases
- Make input to some of the forward pass of type `TFModelInputType`
- Decorate main layer forward pass with `@unpack_inputs`
- Decorate main layer with `@keras_serializable`
- Pass `inputs` to TFIdeficsModel
* Some more fixes forgotten in last commit
* Fix processing code and vision_tf.py
* Fix perceiver bug
* Import from
* Auto-add build() methods + style pass
* Fix build() errors due to `None` being passed as shape to some layers
* Change name in TFIdeficsForVisionText2Text to attribute in IdeficsForVisionText2Text
* Fix pytorch weights load for tf2
There were a lot of `name=` missing in weight initialization code.
* Attempt to fix CI
* Add back accidently removed line
* Remove torch-specific stuff from the TF test file
* make fix-copies, make style, remove autotranslated files
* Fixes to imports/docstrings
* Let's try the from future import in desperation
* Fix the core random_attention_mask fn to match the torch/flax behaviour
* Clean random_attention_mask up correctly
* Remove torch-only test
* Fix loss shape, couple of nits
* make style
* Don't test for OOB embeddings because IDEFICS uses those deliberately
* Fix loss computation to handle masking
* Fix test failures when flattening
* Fix some test failures
- Add cross attention gate which was missing and wasn't being passed arround
- Fix overwriting of image_attention_mask due to hack I had for dummy inputs
* Add a proper stateless scaled_dot_product_attention
* make style
* Adding missing attribute from the PyTorch version
* Small cleanups to decoupledlinearlayer in case that helps
* Pass epsilon to LayerNormalization
* Attemp to fix pytorch weight cross-loading for TFIdeficsEmbedding
* Fix a bug in TFIdeficsGatedCrossAttentionLayer
* Patching up build() methods
* Constant self.inv_freq
* Constant self.inv_freq
* First working version
The TF implementation works now, there was a bug in the TFIdeficsDecoupledLinear
where the weights were mis-intialized (in_features,out_features)
when it should be: (out_features, in_features)
I have tested this so far with tiny-random and idefics-9b-instruct
and gives correct output.
I also dumped the final outputs for both pytorch and TF
and they are identical.
* Fix some test failures
* remove print statement
* Fix return_tensors
* Fix CI test failure check_code_quality
* Attempt to fix CI failures by running `make fixup`
The hardcoded IDs in test_modeling_tf_idefics.py are for the integration
test and makes that file unreadable and should probably be moved to a seperate file.
* Attempt to fix tests_pr_documentation_tests
* Fix a test failure in test_image_processing_idefics.py
* Fix test test_pt_tf_model_equivalence
* Fix a few failures
* Tiny fix
* Some minor fixes
* Remove a duplicate test
* Override a few test failures for IDEFICS
- `test_keras_save_load` is passing now
- `test_compile_tf_model` is still failing
* Fix processing_idefics.py after rebase
* Guard import keras with is_tf_available
* fix check code quality
* fix check code quality
* Minor fixes
* Skip test_save_load temporarily
This test passed on my local box but fails on the CI, skipping
for now to see if there are other remaining failures on the CI.
* Run `ruff format tests src utils`
* Fix last failing test, `test_compile_tf_model`
* Add fixes for vision_tf.py
I forgot to add this file in last commit.
* Minor fixes
* Replace "<<<" with "<<" for doc tests
IDEFICS-9B is too big for doctest runner, so don't run it there
* Make code more readable
* Fix bug after code review
I added a layer_norm_eps to IdeficsConfig but I don't even need it
since the vision config has a layer_norm_eps.
* Fix after code review
Use original code tokenizer.convert_tokens_to_ids
* Keep PyTorch as the default return_tensors
* Fixes to modeling_tf after code review
* Fixes from code review
- Remove all references of `TF_IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST`
- Pass 1e-5 to LayerNormalization in perceiver
* Run ruff
* Undo a change
* Refactor processing code after Matt's suggestion
* Remove TODO's that aren't needed anymore
* For pytorch, Use original pytorch processing code from main
Since this PR is a TF port it shouldn't make any modifications
to pytorch IDEFICS code. This changes undo's the pytorch processing
modifications I made and uses original code from main.
* Update tests/models/idefics/test_modeling_idefics.py
* Update tests/models/idefics/test_modeling_tf_idefics.py
* Add missing imports for is_pt_tf_cross_test
* [DO NOT MERGE]: This is a commit for debugging and will be reverted
The cross test `test_pt_tf_model_equivalence` passes locally but
fails when running on the CI. This commit is to help debug that
and will be reverted.
* Revert "[DO NOT MERGE]: This is a commit for debugging and will be reverted"
This reverts commit 8f0d709ec5bd46685fb0b4259d914ffee794875b.
* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted
* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted
* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"
This reverts commit 998cc38b8c3d313bf5e5eb55a7f5b7b881897b89.
* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"
This reverts commit 1c695ac4219c4ae4d39b330b01744dc27deb7dd4.
* Don't skip test_save_load
IIRC test_save_load was also failing on the CI but not on my local
box, it might be easier to debug that on the CI first than the cross tests
* Debugging commit, will be reverted
* Revert "Debugging commit, will be reverted"
This reverts commit 8eafc8e41e20c4e95a3a90834f06a6e9f445e2d5.
* Override `test_save_load` and push model to save
Maybe this will help me repro this weird bug
* pass my repo_id
* add endpoint
* Pass a temp (write) token just for this CI
* Undo last few commits, still pushing to hub for model debugging
The issue seems to be with save_pretrained(), when I looked at the model saved
from the CI test failure it is basically empty and has no weights.
`self.save_weights(..)` seems to be failing in save_pretrained but needs
more debugging
* Add logging to modeling tf utils, will be reverted just for debugging
* Debugging, will revert
* Revert "Debugging, will revert"
This reverts commit 9d0d3075fb7c82d8cde3a5c76bc8f3876c5c55d3.
* Revert "Add logging to modeling tf utils, will be reverted just for debugging"
This reverts commit 774b6b7b1c17b3ce5d7634ade768f2f686cee617.
* Remove `test_save_load`
The CI failures are gone after my latest rebase, no idea why
but I was still saving the model to my hub on HF and the tf_model.h5
file now has everything.
* Run make fix-copies
* Run ruff format tests src utils
* Debugging commit, will be reverted
* Run ruff, also trigger CI run
* Run ruff again
* Undo debugging commit
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Adding SDPA support for BERT
* Using the proper input name for testing model input in inference()
* Adding documentation for SDPA in BERT model page
* Use the stable link for the documentation
* Adding a gate to only call .contiguous() for torch < 2.2.0
* Additions and fixes to the documentation
* Minor updates to documentation
* Adding extra requirements needed for the contiguous() bug
* Adding "Adapted from" in plcae of the "Copied from"
* Add benchmark speedup tables to the documentation
* Minor fixes to the documentation
* Use ClapText as a replacemenet for Bert in the Copied-From
* Some more fixes for the fix-copies references
* Overriding the test_eager_matches_sdpa_generate in bert tests to not load with low_cpu_mem_usage
[test all]
* Undo changes to separate test
* Refactored SDPA self attention code for KV projections
* Change use_sdpa to attn_implementation
* Fix test_sdpa_can_dispatch_on_flash by preparing input (required for MultipleChoice models)
* chore(root): Initial commit of Phi-3 files.
* fix(root): Fixes Phi-3 missing on readme.
* fix(root): Ensures files are consistent.
* fix(phi3): Fixes unit tests.
* fix(tests): Fixes style of phi-3 test file.
* chore(tests): Adds integration tests for Phi-3.
* fix(phi3): Removes additional flash-attention usage, .e.g, swiglu and rmsnorm.
* fix(phi3): Fixes incorrect docstrings.
* fix(phi3): Fixes docstring typos.
* fix(phi3): Adds support for Su and Yarn embeddings.
* fix(phi3): Improves according first batch of reviews.
* fix(phi3): Uses up_states instead of y in Phi3MLP.
* fix(phi3): Uses gemma rotary embedding to support torch.compile.
* fix(phi3): Improves how rotary embedding classes are defined.
* fix(phi3): Fixes inv_freq not being re-computed for extended RoPE.
* fix(phi3): Adds last suggestions to modeling file.
* fix(phi3): Splits inv_freq calculation in two lines.
* Duplicate swiftformer
* Convert SwiftFormerPatchEmbedding
* Convert SwiftFormerEmbeddings
* Convert TFSwiftFormerMlp
* Convert TFSwiftFormerConvEncoder
* Convert TFSwiftFormerLocalRepresentation
* convert TFSwiftFormerEncoderBlock
* Convert SwiftFormerStage
* Convert SwiftFormerEncoder
* Add TFSWiftFormerPreTrainedModel
* Convert SwiftFormerForImageClassification
* Add kwargs and start drop path
* Fix syntax
* Change Model class name
* Add TFSwiftFormer to __init__
* Duplicate test_modeling_swiftformer
* First test conversions
* Change require_torch to require_tf
* Add exports to swiftformer __init__
* Add TFSwiftFormerModel wrapper
* Fix __init__ and run black
* Remove docstring from MainLayer, fix padding
* Use keras.layers.Activation on keras.Sequential
* Fix swiftformer exports
* Fix activation layer from config
* Remove post_inits
* Use tf.keras.layers.ZeroPadding2D
* Convert torch normalize
* Change tf test input shape
* Fix softmax and reduce_sum
* Convert expand_dims and repeat
* Add missing reshape and tranpose
* Simplify TFSwiftFormerEncoderBlock.call
* Fix mismatch in patch embeddings
* Fix expected output shape to match channels last
* Fix swiftformer typo
* Disable test_onnx
* Fix TFSwiftFormerForImageClassification call
* Add unpack inputs
* Convert flatten(2).mean(-1)
* Change vision dummy inputs (to be reviewed)
* Change test_forward_signature to use .call
* Fix @unpack_inputs
* Set return_tensors="tf" and rename class
* Rename wrongly named patch_embeddings layer
* Add serving_output and change dummy_input shape
* Make dimensions BCHW and transpose inside embedding layer
* Change SwiftFormerEncoderBlock
* Fix ruff problems
* Add image size to swiftformer config
* Change tranpose to MainLayer and use -1 for reshape
* Remove serving_outputs and dummy_inputs
* Remove test_initialization test from tf model
* Make Sequential component a separate layer
* Fix layers' names
* Tranpose encoder outputs
* Fix tests and check if hidden states is not None
* Fix TFSwiftFormerForImageClassification
* Run make fixup
* Run make fix-copies
* Update modeling_tf_auto
* Update docs
* Fix modeling auto mapping
* Update modelint_tf_swiftformer docs
* Fill image_size doc and type
* Add reduction=None to loss computation
* Update docs
* make style
* Debug: Delete the tip to see if that changes anything
* Re-add tip
* Remove add_code_sample_docstrings
* Remove unused import
* Get the debug to actually tell us the problem it has with the docs
* Try a substitution to match the PyTorch file?
* Add swiftformer to ignore list
* Add build() methods
* Update copyright year
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove FIXME comment
* Remove from_pt
* Update copyright year
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Rename one-letter variables
* Remove FIXMEs related to momentum
* Remove old TODO comment
* Remove outstanding FIXME comments
* Get dropout rate from config
* Add specific dropout config for MLP
* Add convencoder dropout to config
* Pass config to SwiftFormerDropPath layer
* Fix drop_path variable name and add Adapted from comment
* Run ruff
* Removed copied from comment
* Run fix copies
* Change drop_path to identity to match pt
* Cleanup build() methods and move to new keras imports
* Update docs/source/en/model_doc/swiftformer.md
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Raise error if drop_path_rate > 0.0
* Apply suggestions from code review
Replace (self.dim), with self.dim,
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Remove drop_path function
* Add training to TFSwiftFormerEncoder
* Set self.built = True last
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Should have been added to previous commit
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Change default_feature_extractor to default_image_processor
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Import Keras from modeling_tf_utils
* Remove relative import
* Run ruff --fix
* Move import keras to tf_available
* Add copied from comment to test_forward_signature
* Reduce batch size and num_labels
* Extract loss logic to hf_compute_loss
* Run ruff format
---------
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* wip
* fix __init__.py
* add docs
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* address comments 1
* work on make fixup
* pass configs down
* add sdpa attention
* remove DbrxBlock
* add to configuration_auto
* docstring now passes formatting test
* fix style
* update READMEs
* add dbrx to modeling_auto
* make fix-copies generated this
* add DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP
* config docstring passes formatting test
* rename moe_loss_weight to router_aux_loss_coef
* add to flash-attn documentation
* fix model-path in tests
* Explicitly make `"suli"` the default `ffn_act_fn`
Co-authored-by: Wing Lian <wing.lian@gmail.com>
* default to using router_aux_loss_coef over ffn_config[moe_loss_weight]
* fix _flash_attn_uses_top_left_mask and is_causal
* fix tests path
* don't use token type IDs
* follow Llama and remove token_type_ids from test
* init ConfigTester differently so tests pass
* remove multiple choice test
* remove question + answer test
* remove sequence classification test
* remove token classification test
* copy Llama tests and remove token_type_ids from test inputs
* do not test pruning or headmasking; style code
* add _tied_weights_keys parameter to pass test
* add type hints
* fix type check
* update config tester
* remove masked_lm test
* remove encoder tests
* initialize DbrxModelTester with correct params
* style
* torch_dtype does not rely on torch
* run make fixup, fix-copies
* use https://huggingface.co/v2ray/dbrx-base-fixed/blob/main/modeling_dbrx.py
* add copyright info
* fix imports and DbrxRotaryEmbedding
* update DbrxModel docstring
* use copies
* change model path in docstring
* use config in DbrxFFN
* fix flashattention2, sdpaattention
* input config to DbrXAttention, DbrxNormAttentionNorm
* more fixes
* fix
* fix again!
* add informative comment
* fix ruff?
* remove print statement + style
* change doc-test
* fix doc-test
* fix docstring
* delete commented out text
* make defaults match dbrx-instruct
* replace `router_aux_loss_coef` with `moe_loss_weight`
* is_decoder=True
* remove is_decoder from configtester
* implement sdpa properly
* make is_decoder pass tests
* start on the GenerationTesterMixin tests
* add dbrx to sdpa documentation
* skip weight typing test
* style
* initialize smaller model
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Add DBRX to toctree
* skip test_new_cache_format
* make config defaults smaller again
* add pad_token_id
* remove pad_token_id from config
* Remove all references to DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP
* Update src/transformers/models/dbrx/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/dbrx/modeling_dbrx.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update docs/source/en/model_doc/dbrx.md
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Update src/transformers/models/dbrx/configuration_dbrx.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update docs/source/en/model_doc/dbrx.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix typo
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update docs, fix configuration_auto.py
* address pr comments
* remove is_decoder flag
* slice
* fix requires grad
* remove grad
* disconnect differently
* remove grad
* enable grads
* patch
* detach expert
* nissan al ghaib
* Update modeling_dbrx.py
* Update src/transformers/models/dbrx/modeling_dbrx.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* replace "Gemma" with "Dbrx"
* remove # type: ignore
* don't hardcode vocab_size
* remove ToDo
* Re-add removed idefics2 line
* Update test to use tiny-random!
* Remove TODO
* Remove one more case of loading the entire dbrx-instruct in the tests
* Update src/transformers/models/dbrx/modeling_dbrx.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* address some comments
* small model
* add dbrx to tokenization_auto
* More docstrings with add_start_docstrings
* Dbrx for now
* add PipelineTesterMixin
* Update src/transformers/models/dbrx/configuration_dbrx.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove flash-attn2 import error
* fix docstring
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add useage example
* put on one line
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix ffn_act_fn
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* change "dbrx" to "DBRX" for display purposes.
* fix __init__.py?
* fix __init__.py
* fix README
* return the aux_loss
* remove extra spaces
* fix configuration_auto.py
* fix format in tokenization_auto
* remove new line
* add more useage examples
---------
Co-authored-by: Abhi Venigalla <abhi.venigalla@databricks.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Eitan Turok <eitan.turok@databricks.com>
Co-authored-by: Eitan Turok <150733043+eitanturok@users.noreply.github.com>
Co-authored-by: Wing Lian <wing.lian@gmail.com>
Co-authored-by: Eitan Turok <eitanturok@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Mihir Patel <mihir.v.patel7@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add jamba arch
* apply "make fix-copies" changes
* fix link to model in JambaConfig docstring
* Add n_ctx in modeling file because repo-consistency wants that
* Add jamba to flash attention and sdpa documentation
* mamba dt_proj quant fix now works for LoRA as well
* override test_left_padding_compatibility and use a more permissive tolerance. left padding numerical difference are accentuated by mamba layers
* add jamba to tokenization auto
* fix comments of shape (PR #24 in the model page: https://huggingface.co/ai21labs/Jamba-v0.1/discussions/24)
* simple PR fixes
* remove unnecessary kwargs from JambaAttentionDecoderLayer and JambaMambaDecoderLayer
* remove the LoRA hack for the mamba dt_proj bias. It was solved in huggingface/peft#1530 (https://github.com/huggingface/peft/pull/1530)
* Add copied comment on JambaMLP (it's the same as MixtralMLP)
* remove padding_mask warnings. It's not supported anymore
* fix docstring. Float instead of int
* A few more minor PR fixes
* (1) lowercase names for mamba layernorms (2) remove _apply_inner_layernorms and do it directly in the forward pass
* Return None attention weights from mamba layers. Append to all attentions only if not None.
* remove some leftover jamba archive lists
* Better separation between expert vs non-expert layers. non-expert layers return None as router_logits, and it is not concatenated to all_router_logits returned from JambaModel
* no need to take router_logits at config.expert_layer_offset anymore. result.router_logits now holds results only for expert layers
* Add Jamba paper on READMEs
* (1) rename n_ctx -> max_position_embeddings (2) don't use it in the modeling file since it's not needed (set it as an exception to check_config_attributes)
* Add copied from comment
* remove the code path for apply_inner_layernorms=False. Jamba always has the inner mamba layernorms
* clearer docstring for _convert_to_standard_cache
* style fixes
* Change calc_logits_for_entire_prompt (bool) to num_logits_to_keep (int). Adapt assisted decoding code tp use it. Also small change in low memory beam search decoding path to support this new int value in model_inputs
* rename test so it still overrides what its meant to override
* draft
* oups
* nit
* remove more complexe logic
* fix names used in config
* fix fix fix
* style
* fix some more failing tests
* generate did not init the cache 🙃
* more small nits
* typo
* config.mamba_expand * config.hidden_size for the intermediate size of the mamba shapes
* fix init of pkv with torch.tensor()
* empty tensor
* fix some init issues
* stupid changes required by generate because it does not even support it's own DynamicCache class
* more fixes
* fix general assisted gen cache_position bug
* tests passing
* Add offsets and periods as SPECIAL_CASES_TO_ALLOW in check_config_attributes.py
* fix reorder_cache to reorder mamba states and override some more functions in HybridMambaAttentionDynamicCache
* no need to override test_past_key_values_format() and _check_past_key_values_for_generate() in tests anymore
* fix docstrings and typehints for past_key_values
* style fixes
* fix docs
* change typehint due to copy from Mixtral
* forgot import
* import order
* Add configuration_jamba and modeling_jamba to not_doctested because the model is too big to download (in docstring of JambaForCausalLM.forward)
* Add integration test with tiny tandom Jamba model on hub
* fix flash attention cache shapes
* bring back forgotten hidden states
* rename HybridMambaAttentionDynamicCache.seqlen_offset to has_previous_state (and make bool) and bugfix - it should be set to True after a finished forward pass of the entire model
* align integration test after modeling fixes
* bugfix - mamba can use precomputed states only of forward pass is on a single token
* bugfix - mamba can use precomputed states only if they match the batch size
* typo
* remove making _prepare_4d_causal_attention_mask a leaf function
* stop using past_seq_len.get_seq_length(). Use cache positions instead. Adjust test (test_decoder_model_past_with_large_inputs) accordingly
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
* Add OLMo using add-new-model-like with Llama
* Fix incorrect tokenizer for OLMo
* Copy-paste relevant OLMo methods and their imports
* Add OLMo config
* Modify OLMo config to follow HF conventions
* Remove unneeded Llama code from OLMo model
* Add ability for OLMo model to output attentions
* Add OLMoPreTrainedModel and OLMoModel
* Add OLMoForCausalLM
* Minor fixes to OLMo model for style and missing functions
* Implement OLMo tokenizer
* Implement OLMo to HF conversion script
* Add tests for OLMo model
* Add tests for OLMo fast tokenizer
* Add auto-generated dummy objects
* Remove unimplemented OLMo classes from auto and init classes and re-format
* Add README and associated auto-generated files
* Use OLMo names for common properties
* Run make fixup
* Remove `|` from OLMo typing
* Remove unneeded tokenization_olmo.py
* Revert model, config and converter to add-new-model-like Llama
* Move logic for adding bos/eos token into GPTNeoxTokenizerFast
* Change OLMoConfig defaults to match OLMo-7B
* Use GPTNeoXToknizerFast in OLMo tokenizer tests
* Modify auto-generated OLMoModelTests to work for OLMo
* Add non-parametric layer norm OLMoLayerNorm
* Update weight conversion script for OLMo
* Fix __init__ and auto structure for OLMo
* Fix errors from make fixup
* Remove OLMoTokenizerFast from documentation
* Add missing 'Copied from' for OLMoModel._update_causal_mask
* Run make fix-copies
* Rearrange string replacements in OLMoForCausalLM Copied from
* Move OLMo and Llama CausalLM.forward example into global constants
* Fix OLMO_GENERATION_EXAMPLE doc string typo
* Add option for qkv clipping to OLMo
* Rearrange OLMoConfig kwargs in convert_olmo_weights_to_hf
* Add clip_qkv to OLMoConfig in convert_olmo_weights_to_hf
* Fix OLMo tokenization bug using conversion script
* Keep model in full precision after conversion
* Do not add eos token automatically
* Update references to OLMo model in HF Hub
* Do not add eos token during encoding by default
* Fix Llama generation example
* Run make fixup
* OLMo 7B integration test fix
* Remove unneeded special case for OLMoConfig
* OLMo 7B Twin 2T integration test fix
* Fix test_model_7b_greedy_generation
* Remove test_compile_static_cache
* Fix OLMo and Llama generation example
* Run make fixup
* Revert "OLMo 7B integration test fix"
This reverts commit 4df56a4b15.
* Revert "OLMo 7B Twin 2T integration test fix"
This reverts commit 9ff65a4a29.
* Ungate 7B integration tests and fix greedy generation test
* Add retries for flaky test_eager_matches_sdpa_generate
* Fix output of doc example for OLMoForCausalLM.forward
* Downsize OLMo doc test for OLMoForCausalLM.forward to 1B model
* Try fix incorrect characters in OLMoForCausalLM.forward doct test
* Try fix incorrect characters in OLMoForCausalLM.forward doc test using end quotes
* Remove pretraining_tp from OLMo config and model
* Add missing 'Copied from' instances
* Remove unneeded causal_mask from OLMoModel
* Revert Llama changes
* Ignore copy for OLMoForCausalLM.forward
* Change 'OLMo' to 'Olmo' in classes
* Move minimal OLMo tokenization tests to model tests
* Add missed 'Copied from' for repeat_kv
* Add create token type ids to CodeGenTokenizer
* Fix inconsistent length of token type ids
* Format source codes
* Fix inconsistent order of methods
* Update docstring
* add test_tokenizer_integration test
* Format source codes
* Add `copied from` comment to CodeGenTokenizerFast
* Add doc of create_token_type_ids_from_sequences
* Make return_token_type_ids False by default
* Make test_tokenizer_integration as slow test
* Add return_token_type_ids to tokenizer init arg
* Add test for tokenizer's init return_token_type_ids
* Format source codes
* Fork.
* RecurrentGemma initial commit.
* Updating __init__.py.
* Minor modification to how we initialize the cache.
Changing how the config specifies the architecture.
* Reformat code to 4 spaces.
Fixed a few typos.
* Fixed the forward pass.
Still unclear on the cache?
* Fixed the RecurrentGemmaForCausalLM
* Minor comment that we might not need attention_mask and output_attention arguments.
* Now cache should work as well.
* Adding a temporary example to check whether the model generation works.
* Adding the tests and updating imports.
* Adding the example file missing in the previous commit.
* First working example.
* Removing .gitignore and reverting parts of __init__.
* Re-add .gitignore.
* Addressing comments for configuration.
* Move mask creation to `_prepare_inputs_for_generation`.
* First try at integration tests:
1. AttributeError: 'GriffinCausalLMOutput' object has no attribute 'attentions'.
2. `cache_position` not passed
* Transfoering between machines.
* Running normal tests.
* Minor fix.
* More fixes.
* Addressing more comments.
* Minor fixes.
* first stab at cleanup
* more refactoring
* fix copies and else
* renaming and get init to work
* fix causal mask creation
* update
* nit
* fix a hell lot of things
* updates
* update conversion script
* make all keys importable
* nits
* add auto mappings
* properly convert ffw_up and down
* add scaling
* fix generations
* for recurrent dtype
* update
* fix going beyong window
* fixup
* add missing files
* current updates to remove last einops
* finish modeling refactor
* TADA
* fix compile
* fix most failing testt ? ?
* update tests
* refactor and update
* update
* nits, fixup and update tests
* more fixup
* nits
* fix imports
* test format
* fixups
* nits
* tuple typing
* fix code quality
* add model card
* fix doc
* skip most generation tests
* nits
* style
* doc fixes
* fix pr and check_copies?
* last nit
* oupsy
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <hi@lysand.re>
* update
* Update src/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* update based on review
* doc nit
* fix quality
* quality
* fix slow test model path
* update default dype
* ignore attributes that can be safely ignored in check config attributes
* 0lallalala come on
* save nit
* style
* remove to dict update
* make sure we can also run in float16
* style
---------
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Aleksandar Botev <botev@google.com>
Co-authored-by: Leonard Berrada <lberrada@users.noreply.github.com>
Co-authored-by: anushanf <anushanf@google.com>
Co-authored-by: botev <botevmg@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add support for qwen2 MoE models
* update docs
* add support for qwen2 MoE models
* update docs
* update model name & test
* update readme
* update class names & readme & model_doc of Qwen2MoE.
* update architecture name
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fix style
* fix test when there are sparse and non sparse layers
* fixup
* Update README.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixup
* fixup
* add archive back
* add support for qwen2 MoE models
* update docs
* update model name & test
* update readme
* update class names & readme & model_doc of Qwen2MoE.
* update architecture name
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* update modeling_qwen2_moe.py
* fix model architecture
* fixup
* fix qwen2_moe tests
* use Qwen2Tokenizer instead of Qwen2MoeTokenizer
* fix style
* fix test when there are sparse and non sparse layers
* fixup
* add archive back
* fix integration test
* fixup
---------
Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Added SuperPoint docs
* Added tests
* Removed commented part
* Commit to create and fix add_superpoint branch with a new branch
* Fixed dummy_pt_objects
* Committed missing files
* Fixed README.md
* Apply suggestions from code review
Fixed small changes
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved ImagePointDescriptionOutput from modeling_outputs.py to modeling_superpoint.py
* Removed AutoModelForKeypointDetection and related stuff
* Fixed inconsistencies in image_processing_superpoint.py
* Moved infer_on_model logic simply in test_inference
* Fixed bugs, added labels to forward method with checks whether it is properly a None value, also added tests about this logic in test_modeling_superpoint.py
* Added tests to SuperPointImageProcessor to ensure that images are properly converted to grayscale
* Removed remaining mentions of MODEL_FOR_KEYPOINT_DETECTION_MAPPING
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fixed from (w, h) to (h, w) as input for tests
* Removed unnecessary condition
* Moved last_hidden_state to be the first returned
* Moved last_hidden_state to be the first returned (bis)
* Moved last_hidden_state to be the first returned (ter)
* Switched image_width and image_height in tests to match recent changes
* Added config as first SuperPointConvBlock init argument
* Reordered README's after merge
* Added missing first config argument to SuperPointConvBlock instantiations
* Removed formatting error
* Added SuperPoint to README's de, pt-br, ru, te and vi
* Checked out README_fr.md
* Fixed README_fr.md
* Test fix README_fr.md
* Test fix README_fr.md
* Last make fix-copies !
* Updated checkpoint path
* Removed unused SuperPoint doc
* Added missing image
* Update src/transformers/models/superpoint/modeling_superpoint.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Removed unnecessary import
* Update src/transformers/models/superpoint/modeling_superpoint.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Added SuperPoint to _toctree.yml
---------
Co-authored-by: steven <steven.bucaillle@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
* Cohere Model Release (#1)
Cohere Model Release
* Remove unnecessary files and code (#2)
Some cleanup
* Delete cohere-model directory (#3)
* Make Fix (#5)
* Pr fixes (#6)
* fixes for pr
* pr fixes for the format
* pr fixes for the format
* src/transformers/models/auto/tokenization_auto.py
* Tokenizer test (#8)
* tokenizer test
* format fix
* Adding Docs and other minor changes (#7)
* Add modeling tests (#9)
* Smol Fix (#11)
* tokenization tests are fixed
* format fixes
* fix pr doc tests
* fix pr doc tests
* fix pr doc tests
* fix pr style check
* small changes in cohere.md
* FIX: Address final comments for transformers integration (#13)
* fix modeling final nits and add proper test file
* for now leave empty tests
* add integration test
* push new test
* fix modeling cohere (#14)
* Update chat templates to use the new API (#15)
---------
Co-authored-by: ahmetustun <ahmetustun89@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Added pytests for pvt-v2, all passed
* Added pvt_v2 to docs/source/end/model_doc
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat. Added additional type support for image size in config
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Reverted batch eval changes for PR
* Updated index.md
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat
* Ran fix-copies
* Fixed PvtV2Backbone tests
* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
* Fixed backbone stuff and fixed tests: all passing
* Ran make fixup
* Made modifications for code checks
* Remove ONNX config from configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use explicit image size dict in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Make image_size optional in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove _ntuple use in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove reference to fp16_enabled
* Model modules now take config as first argument even when not used
* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
* All LayerNorm now instantiates with config.layer_norm_eps
* Added docstring for depth-wise conv layer
* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
* Refactored PVTv2 in prep for gradient checkpointing
* Gradient checkpointing ready to test
* Removed override of _set_gradient_checkpointing
* Cleaned out old code
* Applied code fixup
* Applied code fixup
* Began debug of pvt_v2 tests
* Leave handling of num_labels to base pretrained config class
* Deactivated gradient checkpointing tests until it is fixed
* Removed PvtV2ImageProcessor which duped PvtImageProcessor
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Added pvt_v2 to docs/source/end/model_doc
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat. Added additional type support for image size in config
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* Set key and value layers to use separate linear modules. Fixed pruning function
* Set AvgPool to 7
* Fixed issue in init
* PvT-v2 now works in AutoModel
* Successful conversion of pretrained weights for PVT-v2
* Successful conversion of pretrained weights for PVT-v2 models
* Added pytests for pvt-v2, all passed
* Ran fix-copies and fixup. All checks passed
* Added additional ReLU for linear attention mode
* pvt_v2_b2_linear converted and working
* Reverted batch eval changes for PR
* Expanded type support for Pvt-v2 config
* Fixed config docstring. Added channels property
* Fixed model names in tests
* Fixed config backbone compat
* Ran fix-copies
* Fixed PvtV2Backbone tests
* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
* Fixed backbone stuff and fixed tests: all passing
* Ran make fixup
* Made modifications for code checks
* Remove ONNX config from configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use explicit image size dict in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Make image_size optional in test_modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove _ntuple use in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove reference to fp16_enabled
* Model modules now take config as first argument even when not used
* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
* All LayerNorm now instantiates with config.layer_norm_eps
* Added docstring for depth-wise conv layer
* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
* Refactored PVTv2 in prep for gradient checkpointing
* Gradient checkpointing ready to test
* Removed override of _set_gradient_checkpointing
* Cleaned out old code
* Applied code fixup
* Applied code fixup
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Ran fix-copies and fixup. All checks passed
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Reverted batch eval changes for PR
* Fixed config docstring. Added channels property
* Fixed config backbone compat
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Ran fix-copies and fixup. All checks passed
* Allowed for batching of eval metrics
* copied models/pvt to adapt to pvt_v2
* First commit of pvt_v2
* PvT-v2 now works in AutoModel
* Fixed config backbone compat
* Ran fix-copies
* Began debug of pvt_v2 tests
* Leave handling of num_labels to base pretrained config class
* Deactivated gradient checkpointing tests until it is fixed
* Removed PvtV2ImageProcessor which duped PvtImageProcessor
* Fixed issue from rebase
* Fixed issue from rebase
* Set tests for gradient checkpointing to skip those using reentrant since it isn't supported
* Fixed issue from rebase
* Fixed issue from rebase
* Changed model name in docs
* Removed duplicate PvtV2Backbone
* Work around type switching issue in tests
* Fix model name in config comments
* Update docs/source/en/model_doc/pvt_v2.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Changed name of variable from 'attn_reduce' to 'sr_type'
* Changed name of variable from 'attn_reduce' to 'sr_type'
* Changed from using 'sr_type' to 'linear_attention' for clarity
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Removed old code
* Changed from using 'sr_type' to 'linear_attention' for clarity
* Fixed Class names to be more descriptive
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Removed outdated code
* Moved paper abstract to single line in pvt_v2.md
* Added usage tips to pvt_v2.md
* Simplified module inits by passing layer_idx
* Fixed typing for hidden_act in PvtV2Config
* Removed unusued import
* Add pvt_v2 to docs/source/en/_toctree.yml
* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Move function parameters to single line
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Update year of copyright to 2024
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
Make code more explicit
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Updated sr_ratio to be more explicit spatial_reduction_ratio
* Removed excess type hints in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Move params to single line in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Removed needless comment in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update copyright date in pvt_v2.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved params to single line in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Updated copyright date in configuration_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Cleaned comments in modeling_pvt_v2.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Renamed spatial_reduction Conv2D operation
* Revert "Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
"
This reverts commit c4a04416dd.
* Updated conversion script to reflect module name change
* Deprecated reshape_last_stage option in config
* Removed unused imports
* Code formatting
* Fixed outdated decorators on test_inference_fp16
* Added "Copied from" comments in test_modeling_pvt_v2.py
* Fixed import listing
* Updated model name
* Force empty commit for PR refresh
* Fixed linting issue
* Removed # Copied from comments
* Added PVTv2 to README_fr.md
* Ran make fix-copies
* Replace all FoamoftheSea hub references with OpenGVLab
* Fixed out_indices and out_features logic in configuration_pvt_v2.py
* Made ImageNet weight conversion verification optional in convert_pvt_v2_to_pytorch.py
* Ran code fixup
* Fixed order of parent classes in PvtV2Config to fix the to_dict method override
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* initial-commit
* start cleaning
* small nits
* small nits
* current updates
* add kernels
* small refactoring little step
* add comments
* styling
* nit
* nits
* Style
* Small changes
* Push dummy mambda simple slow
* nit
* Use original names
* Use original names and remove norm
* Updates for inference params
* Style nd updates
* nits
* Match logits
* Add a test
* Add expected generated text
* nits doc, imports and styling
* style
* oups
* dont install kernels, invite users to install the required kernels
* let use use the original packages
* styling
* nits
* fix some copieds
* update doc
* fix-copies
* styling done
* nits
* fix import check
* run but wrong cuda ress
* mamba CUDA works :)
* fix the fast path
* config naming nits
* conversion script is not required at this stage
* finish fixing the fast path: generation make sense now!
* nit
* Let's start working on the CIs
* style
* better style
* more nits
* test nit
* quick fix for now
* nits
* nit
* nit
* nit
* nits
* update test rest
* fixup
* update test
* nit
* some fixes
* nits
* update test values
* fix styling
* nit
* support peft
* integrations tests require torchg
* also add slow markers
* styling
* chose forward wisely
* nits
* update tests
* fix gradient checkpointing
* fixup
* nit
* fix doc
* check copies
* fix the docstring
* fix some more tests
* style
* fix beam search
* add init schene
* update
* nit
* fix
* fixup the doc
* fix the doc
* fixup
* tentative update but slow is no longer good
* nit
* should we always use float32?
* nits
* revert wrong changes
* res in float32
* cleanup
* skip fmt for now
* update generation values
* update test values running original model
* fixup
* update tests + rename inference_params to cache_params + make sure training does not use cache_params
* small nits
* more nits
* fix final CIs
* style
* nit doc
* I hope final doc nits
* nit
* 🫠
* final touch!
* fix torch import
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Apply suggestions from code review
* fix fix and fix
* fix base model prefix!
* nit
* Update src/transformers/models/mamba/__init__.py
* Update docs/source/en/model_doc/mamba.md
Co-authored-by: Lysandre Debut <hi@lysand.re>
* nit
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* First draft
* More improvements
* More improvements
* More fixes
* Fix copies
* More improvements
* More fixes
* More improvements
* Convert checkpoint
* More improvements, set up tests
* Fix more tests
* Add UdopModel
* More improvements
* Fix equivalence test
* More fixes
* Redesign model
* Extend conversion script
* Use real inputs for conversion script
* Add image processor
* Improve conversion script
* Add UdopTokenizer
* Add fast tokenizer
* Add converter
* Update README's
* Add processor
* Add fully fledged tokenizer
* Add fast tokenizer
* Use processor in conversion script
* Add tokenizer tests
* Fix one more test
* Fix more tests
* Fix tokenizer tests
* Enable fast tokenizer tests
* Fix more tests
* Fix additional_special_tokens of fast tokenizer
* Fix tokenizer tests
* Fix more tests
* Fix equivalence test
* Rename image to pixel_values
* Rename seg_data to bbox
* More renamings
* Remove vis_special_token
* More improvements
* Add docs
* Fix copied from
* Update slow tokenizer
* Update fast tokenizer design
* Make text input optional
* Add first draft of processor tests
* Fix more processor tests
* Fix decoder_start_token_id
* Fix test_initialization
* Add integration test
* More improvements
* Improve processor, add test
* Add more copied from
* Add more copied from
* Add more copied from
* Add more copied from
* Remove print statement
* Update README and auto mapping
* Delete files
* Delete another file
* Remove code
* Fix test
* Fix docs
* Remove asserts
* Add doc tests
* Include UDOP in exotic model tests
* Add expected tesseract decodings
* Add sentencepiece
* Use same design as T5
* Add UdopEncoderModel
* Add UdopEncoderModel to tests
* More fixes
* Fix fast tokenizer
* Fix one more test
* Remove parallelisable attribute
* Fix copies
* Remove legacy file
* Copy from T5Tokenizer
* Fix rebase
* More fixes, copy from T5
* More fixes
* Fix init
* Use ArthurZ/udop for tests
* Make all model tests pass
* Remove UdopForConditionalGeneration from auto mapping
* Fix more tests
* fixups
* more fixups
* fix the tokenizers
* remove un-necessary changes
* nits
* nits
* replace truncate_sequences_boxes with truncate_sequences for fix-copies
* nit current path
* add a test for input ids
* ids that we should get taken from c9f7a32f57
* nits converting
* nits
* apply ruff
* nits
* nits
* style
* fix slow order of addition
* fix udop fast range as well
* fixup
* nits
* Add docstrings
* Fix gradient checkpointing
* Update code examples
* Skip tests
* Update integration test
* Address comment
* Make fixup
* Remove extra ids from tokenizer
* Skip test
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update year
* Address comment
* Address more comments
* Address comments
* Add copied from
* Update CI
* Rename script
* Update model id
* Add AddedToken, skip tests
* Update CI
* Fix doc tests
* Do not use Tesseract for the doc tests
* Remove kwargs
* Add original inputs
* Update casting
* Fix doc test
* Update question
* Update question
* Use LayoutLMv3ImageProcessor
* Update organization
* Improve docs
* Update forward signature
* Make images optional
* Remove deprecated device argument
* Add comment, add add_prefix_space
* More improvements
* Remove kwargs
---------
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* This is a test commit
* testing commit
* final commit with some changes
* Removed copy statement
* Fixed formatting issues
* Fixed error added past_key_values in the forward method
* Fixed a trailing whitespace. Damn the formatting rules are strict
* Added the copy statement
* Fix typos and grammar mistakes in docs and examples
* Fix typos in docstrings and comments
* Fix spelling of `tokenizer` in model tests
* Remove erroneous spaces in decorators
* Remove extra spaces in Markdown link texts
* Adding [T5/MT5/UMT5]ForTokenClassification
* Add auto mappings for T5ForTokenClassification and variants
* Adding ForTokenClassification to the list of models
* Adding attention_mask param to the T5ForTokenClassification test
* Remove outdated comment in test
* Adding EncoderOnly and Token Classification tests for MT5 and UMT5
* Fix typo in umt5 string
* Add tests for all the existing MT5 models
* Fix wrong comment in dependency_versions_table
* Reverting change to common test for _keys_to_ignore_on_load_missing
The test is correctly picking up redundant keys in _keys_to_ignore_on_load_missing.
* Removing _keys_to_ignore_on_missing from MT5 since the key is not used in the model
* Add fix-copies to MT5ModelTest
* first commit
* correct default value non causal
* update config and modeling code
* update converting checkpoint
* clean modeling and fix tests
* make style
* add new config parameters to docstring
* fix copied from statements
* Apply suggestions from code review
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
* make position_embeddings_type docstrings clearer
* clean converting script
* remove function not used
* clean modeling file
* apply suggestion for test file + add convert script to not_doctested
* modify tests according to review - cleaner logic and more tests
* Apply nit suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add checker of valid position embeddings type
* instantiate new layer norm layer with the right eps
* fix freeze_feature_encoder since it can be None in some cases
* add test same output in convert script
* restore wav2vec2conformer and add new model
* create processor and FE + clean
* add new model code
* fix convert script and set default config parameters
* correct model id paths
* make style
* make fix-copies and cleaning files
* fix copied from statements
* complete .md and fixe copies
* clean convert script argument defaults
* fix config parameters docstrings
* fix config docstring
* add copied from and enrich FE tests
* fix copied from and repo-consistency
* add autotokenizer
* make test input length shorter and change docstring code
* fix docstrings and copied from
* add add_adapter to ASR training example
* make testing of adapters more robust
* adapt to multi adapter layers
* refactor input_values->input_features and remove w2v2-bert feature extractor
* remove pretraining model
* remove depreciated features and useless lines
* add copied from and ignore statements to modeling tests
* remove pretraining model #2
* change import in convert script
* change default in convert script
* update readme and remove useless line
* Update tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* refactor BERT to Bert for consistency
* remove useless ignore copy statement
* add persistent to buffer in rotary
* add eps in LayerNorm init and remove copied from
* add adapter activation parameters and add copied from statements
* Fix copied statements and add unitest.skip reasons
* add copied statement in test_processor
* refactor processor
* make style
* replace numpy random by torch rand
* remove expected output CTC
* improve converting script with processor class
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove gumbel class
* remove tests related to previously deleted class
* Update src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* correct typos
* remove uused parameters
* update processor to takes both text and audio
* update checkpoints
* update expected output and add ctc expected output
* add label_attention_mask
* replace pt with np in processor tests
* fix typo
* revert to behaviour with labels_attention_mask
---------
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add first draft
* Use appropriate gelu function
* More improvements
* More improvements
* More improvements
* Convert checkpoint
* More improvements
* Improve docs, remove print statements
* More improvements
* Add link
* remove unused masking function
* begin tokenizer
* do_lower_case
* debug
* set split_special_tokens=True
* Remove script
* Fix style
* Fix rebase
* Use same design as CLIP
* Add fast tokenizer
* Add SiglipTokenizer to init, remove extra_ids
* Improve conversion script
* Use smaller inputs in conversion script
* Update conversion script
* More improvements
* Add processor to conversion script
* Add tests
* Remove print statements
* Add tokenizer tests
* Fix more tests
* More improvements related to weight initialization
* More improvements
* Make more tests pass
* More improvements
* More improvements
* Add copied from
* Add canonicalize_text
* Enable fast tokenizer tests
* More improvements
* Fix most slow tokenizer tests
* Address comments
* Fix style
* Remove script
* Address some comments
* Add copied from to tests
* Add more copied from
* Add more copied from
* Add more copied from
* Remove is_flax_available
* More updates
* Address comment
* Remove SiglipTokenizerFast for now
* Add caching
* Remove umt5 test
* Add canonicalize_text inside _tokenize, thanks Arthur
* Fix image processor tests
* Skip tests which are not applicable
* Skip test_initialization
* More improvements
* Compare pixel values
* Fix doc tests, add integration test
* Add do_normalize
* Remove causal mask and leverage ignore copy
* Fix attention_mask
* Fix remaining tests
* Fix dummies
* Rename temperature and bias
* Address comments
* Add copied from to tokenizer tests
* Add SiglipVisionModel to auto mapping
* Add copied from to image processor tests
* Improve doc
* Remove SiglipVisionModel from index
* Address comments
* Improve docs
* Simplify config
* Add first draft
* Make it like mistral
* More improvements
* Fix attention_mask
* Fix output_attentions
* Add note in docs
* Convert multilingual model
* Convert large checkpoint
* Convert more checkpoints
* Add pipeline support, correct image_mean and image_std
* Use padding=max_length by default
* Make processor like llava
* Add code snippet
* Convert more checkpoints
* Set keep_punctuation_string=None as in OpenCLIP
* Set normalized=False for special tokens
* Fix doc test
* Update integration test
* Add figure
* Update organization
* Happy new year
* Use AutoModel everywhere
---------
Co-authored-by: patil-suraj <surajp815@gmail.com>
* start - docs, SpeechT5 copy and rename
* add relevant code from FastSpeech2 draft, have tests pass
* make it an actual conformer, demo ex.
* matching inference with original repo, includes debug code
* refactor nn.Sequentials, start more desc. var names
* more renaming
* more renaming
* vocoder scratchwork
* matching vocoder outputs
* hifigan vocoder conversion script
* convert model script, rename some config vars
* replace postnet with speecht5's implementation
* passing common tests, file cleanup
* expand testing, add output hidden states and attention
* tokenizer + passing tokenizer tests
* variety of updates and tests
* g2p_en pckg setup
* import structure edits
* docstrings and cleanup
* repo consistency
* deps
* small cleanup
* forward signature param order
* address comments except for masks and labels
* address comments on attention_mask and labels
* address second round of comments
* remove old unneeded line
* address comments part 1
* address comments pt 2
* rename auto mapping
* fixes for failing tests
* address comments part 3 (bart-like, train loss)
* make style
* pass config where possible
* add forward method + tests to WithHifiGan model
* make style
* address arg passing and generate_speech comments
* address Arthur comments
* address Arthur comments pt2
* lint changes
* Sanchit comment
* add g2p-en to doctest deps
* move up self.encoder
* onnx compatible tensor method
* fix is symbolic
* fix paper url
* move models to espnet org
* make style
* make fix-copies
* update docstring
* Arthur comments
* update docstring w/ new updates
* add model architecture images
* header size
* md wording update
* make style
* add sdpa
* wip
* cleaning
* add ref
* yet more cleaning
* and more :)
* wip llama
* working llama
* add output_attentions=True support
* bigcode sdpa support
* fixes
* gpt-bigcode support, require torch>=2.1.1
* add falcon support
* fix conflicts falcon
* style
* fix attention_mask definition
* remove output_attentions from attnmaskconverter
* support whisper without removing any Copied from statement
* fix mbart default to eager renaming
* fix typo in falcon
* fix is_causal in SDPA
* check is_flash_attn_2_available in the models init as well in case the model is not initialized through from_pretrained
* add warnings when falling back on the manual implementation
* precise doc
* wip replace _flash_attn_enabled by config.attn_implementation
* fix typo
* add tests
* style
* add a copy.deepcopy on the config in from_pretrained, as we do not want to modify it inplace
* obey to config.attn_implementation if a config is passed in from_pretrained
* fix is_torch_sdpa_available when torch is not installed
* remove dead code
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/bart/modeling_bart.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove duplicate pretraining_tp code
* add dropout in llama
* precise comment on attn_mask
* add fmt: off for _unmask_unattended docstring
* precise num_masks comment
* nuke pretraining_tp in LlamaSDPAAttention following Arthur's suggestion
* cleanup modeling_utils
* backward compatibility
* fix style as requested
* style
* improve documentation
* test pass
* style
* add _unmask_unattended tests
* skip meaningless tests for idefics
* hard_check SDPA requirements when specifically requested
* standardize the use if XXX_ATTENTION_CLASSES
* fix SDPA bug with mem-efficient backend on CUDA when using fp32
* fix test
* rely on SDPA is_causal parameter to handle the causal mask in some cases
* fix FALCON_ATTENTION_CLASSES
* remove _flash_attn_2_enabled occurences
* fix test
* add OPT to the list of supported flash models
* improve test
* properly test on different SDPA backends, on different dtypes & properly handle separately the pad tokens in the test
* remove remaining _flash_attn_2_enabled occurence
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/modeling_attn_mask_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update docs/source/en/perf_infer_gpu_one.md
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* remove use_attn_implementation
* fix docstring & slight bug
* make attn_implementation internal (_attn_implementation)
* typos
* fix tests
* deprecate use_flash_attention_2=True
* fix test
* add back llama that was removed by mistake
* fix tests
* remove _flash_attn_2_enabled occurences bis
* add check & test that passed attn_implementation is valid
* fix falcon torchscript export
* fix device of mask in tests
* add tip about torch.jit.trace and move bt doc below sdpa
* fix parameterized.expand order
* move tests from test_modeling_attn_mask_utils to test_modeling_utils as a relevant test class is already there
* update sdpaattention class with the new cache
* Update src/transformers/configuration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/bark/modeling_bark.py
* address review comments
* WIP torch.jit.trace fix. left: test both eager & sdpa
* add test for torch.jit.trace for both eager/sdpa
* fix falcon with torch==2.0 that needs to use sdpa
* fix doc
* hopefully last fix
* fix key_value_length that has no default now in mask converter
* is it flacky?
* fix speculative decoding bug
* tests do pass
* fix following #27907
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add model like
* logits match
* minor fixes
* fixes
* up
* up
* add todo
* llava processor
* keep the processor simple
* add conversion script
* fixup
* fix copies
* up
* add to index
* fix config + logits
* fix
* refactor
* more refactor
* more refactor
* fix copies
* add authors
* v1 tests
* add `LlavaProcessor` in init
* remove unneeded import
* up
* up
* docs
* up
* fix CI
* fix CI
* add attention mask in test
* make fixup
* remove the vision model
* that' s the dirty way to do it
* nits
* nits
* updates
* add more tests
* add input tests
* fixup
* more styling
* nits
* updates amd cleanup
* fixup the generation expected results
* fix the testing script
* some cleanup and simplification which does not work yet but almost there!
* make correct dispatch operations
* vectorize works for batch of images and text
* last todos
* nits
* update test and modeling code
* remove useless function for now
* fix few issues
* fix generation
* some nits
* add bakllava
* nits
* remove duplicated code
* finis merge
* cleanup
* missed this line
* fill the todos
* add left padding offset
* add left and rignt padding logic
* bool to properly index
* make sure
* more cleanups
* batch is fixed 😉
* add correct device for tensor creation
* fix some dtype missmatch
* ruff
* update conversion script
* Update src/transformers/__init__.py
* fa 2 support + fix conversion script
* more
* correct reshaping
* fix test dict
* fix copies by ignoring
* fix nit
* skip clip vision model
* fixup
* fixup
* LlavaForVisionText2Text -> LlavaForCausalLM
* update
* fix
* raise correct errors
* fix
* docs
* nuke for now
* nits here and there
* fixup
* fix remaining tests
* update LlavaForConditionalGeneration instead of CausalLM
* fixups
* pipeline support
* slow and piepline tests
* supports batch
* nits
* cleanup
* fix first integration tests
* add pad token where needed
* correct etsts
* fixups
* update pipeline testr
* fix quality
* nits
* revert unneeded change
* nit
* use BatchFeature
* from ...feature_extraction_utils import BatchFeature
* nits
* nits
* properly update
* more f*** nits
* fix copies
* comment
* keep slow test slow
* Update src/transformers/models/llava/processing_llava.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add piepline example
* add pixel values in docstrign
* update pr doctest
* fix
* fix slow tests
* remove hack
* fixup
* small note
* forward contrib credits from PR25789
* forward contrib credits from original implementation and work
* add arthur
* Update src/transformers/models/llava/processing_llava.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* update docstring
* nit
* move to not doctested because of timeout issues
* fixup
* add description
* more
* fix-copies
* fix docs
* add beam search
* add more comments
* add typehints on processor
* add speedup plot
* update slow tests and docs
* push test
* push batched test
* fix batched generation with different number of images
* remove benchmark due to a bug
* fix test
* fix copies
* add gcolab demo
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: shauray8 <shauray8@users.noreply.github.com>
Co-authored-by: haotian-liu <haotian-liu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>