transformers/docs/source/en/model_doc/van.md
Sylvain Gugger eb849f6604
Migrate doc files to Markdown. (#24376)
* Rename index.mdx to index.md

* With saved modifs

* Address review comment

* Treat all files

* .mdx -> .md

* Remove special char

* Update utils/tests_fetcher.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

---------

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-06-20 18:07:47 -04:00

3.8 KiB

VAN

Overview

The VAN model was proposed in Visual Attention Network by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.

This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations.

The abstract from the paper is the following:

While originally designed for natural language processing tasks, the self-attention mechanism has recently taken various computer vision areas by storm. However, the 2D nature of images brings three challenges for applying self-attention in computer vision. (1) Treating images as 1D sequences neglects their 2D structures. (2) The quadratic complexity is too expensive for high-resolution images. (3) It only captures spatial adaptability but ignores channel adaptability. In this paper, we propose a novel large kernel attention (LKA) module to enable self-adaptive and long-range correlations in self-attention while avoiding the above issues. We further introduce a novel neural network based on LKA, namely Visual Attention Network (VAN). While extremely simple, VAN outperforms the state-of-the-art vision transformers and convolutional neural networks with a large margin in extensive experiments, including image classification, object detection, semantic segmentation, instance segmentation, etc. Code is available at this https URL.

Tips:

  • VAN does not have an embedding layer, thus the hidden_states will have a length equal to the number of stages.

The figure below illustrates the architecture of a Visual Aattention Layer. Taken from the original paper.

This model was contributed by Francesco. The original code can be found here.

Resources

A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with VAN.

If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

VanConfig

autodoc VanConfig

VanModel

autodoc VanModel - forward

VanForImageClassification

autodoc VanForImageClassification - forward