mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 23:00:08 +06:00

Updating Gemma 3n docs and docstrings to clarify the relationship between the newly trained audio encoder used in Gemma 3n and the USM model from the original paper.
205 lines
6.8 KiB
Markdown
205 lines
6.8 KiB
Markdown
|
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# Gemma3n
|
|
|
|
## Overview
|
|
|
|
Gemma3n is a multimodal model with pretrained and instruction-tuned variants, available in E4B and E2B sizes. While
|
|
large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in
|
|
this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented Residual Layer][laurel] (LAuReL),
|
|
[MatFormer][matformer], Per-Layer Embeddings (PLE), activation sparsity, and KV cache sharing. The language model uses
|
|
a similar attention pattern to [Gemma 3](./gemma3.md) with alternating 4 local sliding window self-attention layers for
|
|
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
|
|
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
|
|
trained audio encoder based on the [Universal Speech Model][usm] (USM) architecture.
|
|
|
|
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
|
|
|
|
You can find all the original Gemma 3n checkpoints under the [Gemma 3n][gemma3n-collection] release.
|
|
|
|
> [!TIP]
|
|
> Click on the Gemma 3n models in the right sidebar for more examples of how to apply Gemma to different vision, audio,
|
|
> and language tasks.
|
|
|
|
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipeline = pipeline(
|
|
task="image-text-to-text",
|
|
model="google/gemma-3n-e4b",
|
|
device=0,
|
|
torch_dtype=torch.bfloat16
|
|
)
|
|
pipeline(
|
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
|
text="<start_of_image> What is shown in this image?"
|
|
)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
|
|
|
|
model = Gemma3nForConditionalGeneration.from_pretrained(
|
|
"google/gemma-3n-e4b-it",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
processor = AutoProcessor.from_pretrained(
|
|
"google/gemma-3n-e4b-it",
|
|
padding_side="left"
|
|
)
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": [
|
|
{"type": "text", "text": "You are a helpful assistant."}
|
|
]
|
|
},
|
|
{
|
|
"role": "user", "content": [
|
|
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
|
|
{"type": "text", "text": "What is shown in this image?"},
|
|
]
|
|
},
|
|
]
|
|
inputs = processor.apply_chat_template(
|
|
messages,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
return_tensors="pt",
|
|
add_generation_prompt=True,
|
|
).to("cuda")
|
|
|
|
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")
|
|
print(processor.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="transformers CLI">
|
|
|
|
```bash
|
|
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model google/gemma-3n-e2b --device 0
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
## Notes
|
|
|
|
- Use [`Gemma3nForConditionalGeneration`] for image-audio-and-text, image-and-text, image-and-audio, audio-and-text,
|
|
image-only and aduio-only inputs.
|
|
- Gemma 3n supports multiple images per input, but make sure the images are correctly batched before passing them to
|
|
the processor. Each batch should be a list of one or more images.
|
|
|
|
```py
|
|
url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
|
|
url_cat = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
|
|
|
messages =[
|
|
{
|
|
"role": "system",
|
|
"content": [
|
|
{"type": "text", "text": "You are a helpful assistant."}
|
|
]
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "url": url_cow},
|
|
{"type": "image", "url": url_cat},
|
|
{"type": "text", "text": "Which image is cuter?"},
|
|
]
|
|
},
|
|
]
|
|
```
|
|
- Text passed to the processor should have a `<image_soft_token>` token wherever an image should be inserted.
|
|
- Gemma 3n accept at most one target audio clip per input, though multiple audio clips can be provided in few-shot
|
|
prompts, for example.
|
|
- Text passed to the processor should have a `<audio_soft_token>` token wherever an audio clip should be inserted.
|
|
- The processor has its own [`~ProcessorMixin.apply_chat_template`] method to convert chat messages to model inputs.
|
|
|
|
## Gemma3nAudioFeatureExtractor
|
|
|
|
[[autodoc]] Gemma3nAudioFeatureExtractor
|
|
|
|
## Gemma3nProcessor
|
|
|
|
[[autodoc]] Gemma3nProcessor
|
|
|
|
## Gemma3nTextConfig
|
|
|
|
[[autodoc]] Gemma3nTextConfig
|
|
|
|
## Gemma3nVisionConfig
|
|
|
|
[[autodoc]] Gemma3nVisionConfig
|
|
|
|
## Gemma3nAudioConfig
|
|
|
|
[[autodoc]] Gemma3nAudioConfig
|
|
|
|
## Gemma3nConfig
|
|
|
|
[[autodoc]] Gemma3nConfig
|
|
|
|
## Gemma3nTextModel
|
|
|
|
[[autodoc]] Gemma3nTextModel
|
|
- forward
|
|
|
|
## Gemma3nModel
|
|
|
|
[[autodoc]] Gemma3nModel
|
|
- forward
|
|
|
|
## Gemma3nForCausalLM
|
|
|
|
[[autodoc]] Gemma3nForCausalLM
|
|
- forward
|
|
|
|
## Gemma3nForConditionalGeneration
|
|
|
|
[[autodoc]] Gemma3nForConditionalGeneration
|
|
- forward
|
|
|
|
[altup]: https://proceedings.neurips.cc/paper_files/paper/2023/hash/f2059277ac6ce66e7e5543001afa8bb5-Abstract-Conference.html
|
|
[attention-mask-viz]: https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139
|
|
[gemma3n-collection]: https://huggingface.co/collections/google/gemma-3n
|
|
[laurel]: https://arxiv.org/abs/2411.07501
|
|
[matformer]: https://arxiv.org/abs/2310.07707
|
|
[usm]: https://arxiv.org/abs/2303.01037
|