
Updating Gemma 3n docs and docstrings to clarify the relationship between the newly trained audio encoder used in Gemma 3n and the USM model from the original paper.
6.8 KiB
Gemma3n
Overview
Gemma3n is a multimodal model with pretrained and instruction-tuned variants, available in E4B and E2B sizes. While large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in this model, including Alternating Updates (AltUp), Learned Augmented Residual Layer (LAuReL), MatFormer, Per-Layer Embeddings (PLE), activation sparsity, and KV cache sharing. The language model uses a similar attention pattern to Gemma 3 with alternating 4 local sliding window self-attention layers for every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces [MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly trained audio encoder based on the Universal Speech Model (USM) architecture.
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
You can find all the original Gemma 3n checkpoints under the Gemma 3n release.
Tip
Click on the Gemma 3n models in the right sidebar for more examples of how to apply Gemma to different vision, audio, and language tasks.
The example below demonstrates how to generate text based on an image with [Pipeline
] or the [AutoModel
] class.
import torch
from transformers import pipeline
pipeline = pipeline(
task="image-text-to-text",
model="google/gemma-3n-e4b",
device=0,
torch_dtype=torch.bfloat16
)
pipeline(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
text="<start_of_image> What is shown in this image?"
)
import torch
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
model = Gemma3nForConditionalGeneration.from_pretrained(
"google/gemma-3n-e4b-it",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
processor = AutoProcessor.from_pretrained(
"google/gemma-3n-e4b-it",
padding_side="left"
)
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful assistant."}
]
},
{
"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
{"type": "text", "text": "What is shown in this image?"},
]
},
]
inputs = processor.apply_chat_template(
messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
).to("cuda")
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")
print(processor.decode(output[0], skip_special_tokens=True))
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model google/gemma-3n-e2b --device 0
Notes
-
Use [
Gemma3nForConditionalGeneration
] for image-audio-and-text, image-and-text, image-and-audio, audio-and-text, image-only and aduio-only inputs. -
Gemma 3n supports multiple images per input, but make sure the images are correctly batched before passing them to the processor. Each batch should be a list of one or more images.
url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4=" url_cat = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" messages =[ { "role": "system", "content": [ {"type": "text", "text": "You are a helpful assistant."} ] }, { "role": "user", "content": [ {"type": "image", "url": url_cow}, {"type": "image", "url": url_cat}, {"type": "text", "text": "Which image is cuter?"}, ] }, ]
-
Text passed to the processor should have a
<image_soft_token>
token wherever an image should be inserted. -
Gemma 3n accept at most one target audio clip per input, though multiple audio clips can be provided in few-shot prompts, for example.
-
Text passed to the processor should have a
<audio_soft_token>
token wherever an audio clip should be inserted. -
The processor has its own [
~ProcessorMixin.apply_chat_template
] method to convert chat messages to model inputs.
Gemma3nAudioFeatureExtractor
autodoc Gemma3nAudioFeatureExtractor
Gemma3nProcessor
autodoc Gemma3nProcessor
Gemma3nTextConfig
autodoc Gemma3nTextConfig
Gemma3nVisionConfig
autodoc Gemma3nVisionConfig
Gemma3nAudioConfig
autodoc Gemma3nAudioConfig
Gemma3nConfig
autodoc Gemma3nConfig
Gemma3nTextModel
autodoc Gemma3nTextModel - forward
Gemma3nModel
autodoc Gemma3nModel - forward
Gemma3nForCausalLM
autodoc Gemma3nForCausalLM - forward
Gemma3nForConditionalGeneration
autodoc Gemma3nForConditionalGeneration - forward