mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Add usage example for DINOv2 * More explicit shape names * More verbose text * Moved example to Notes section * Indentation
210 lines
10 KiB
Markdown
210 lines
10 KiB
Markdown
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
|
|
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
|
|
# DINOv2
|
|
|
|
[DINOv2](https://huggingface.co/papers/2304.07193) is a vision foundation model that uses [ViT](./vit) as a feature extractor for multiple downstream tasks like image classification and depth estimation. It focuses on stabilizing and accelerating training through techniques like a faster memory-efficient attention, sequence packing, improved stochastic depth, Fully Sharded Data Parallel (FSDP), and model distillation.
|
|
|
|
You can find all the original DINOv2 checkpoints under the [Dinov2](https://huggingface.co/collections/facebook/dinov2-6526c98554b3d2576e071ce3) collection.
|
|
|
|
> [!TIP]
|
|
> Click on the DINOv2 models in the right sidebar for more examples of how to apply DINOv2 to different vision tasks.
|
|
|
|
The example below demonstrates how to obtain an image embedding with [`Pipeline`] or the [`AutoModel`] class.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipe = pipeline(
|
|
task="image-classification",
|
|
model="facebook/dinov2-small-imagenet1k-1-layer",
|
|
torch_dtype=torch.float16,
|
|
device=0
|
|
)
|
|
|
|
pipe("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import requests
|
|
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
|
from PIL import Image
|
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-small-imagenet1k-1-layer")
|
|
model = AutoModelForImageClassification.from_pretrained(
|
|
"facebook/dinov2-small-imagenet1k-1-layer",
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
logits = model(**inputs).logits
|
|
predicted_class_idx = logits.argmax(-1).item()
|
|
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
|
|
|
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
|
|
|
```py
|
|
# pip install torchao
|
|
import requests
|
|
from transformers import TorchAoConfig, AutoImageProcessor, AutoModelForImageClassification
|
|
from torchao.quantization import Int4WeightOnlyConfig
|
|
from PIL import Image
|
|
|
|
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-giant-imagenet1k-1-layer')
|
|
|
|
quant_config = Int4WeightOnlyConfig(group_size=128)
|
|
quantization_config = TorchAoConfig(quant_type=quant_config)
|
|
|
|
model = AutoModelForImageClassification.from_pretrained(
|
|
'facebook/dinov2-giant-imagenet1k-1-layer',
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
quantization_config=quantization_config
|
|
)
|
|
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
predicted_class_idx = logits.argmax(-1).item()
|
|
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
|
```
|
|
|
|
## Notes
|
|
|
|
- The example below shows how to split the output tensor into:
|
|
- one embedding for the whole image, commonly referred to as a `CLS` token,
|
|
useful for classification and retrieval
|
|
- a set of local embeddings, one for each `14x14` patch of the input image,
|
|
useful for dense tasks, such as semantic segmentation
|
|
|
|
```py
|
|
from transformers import AutoImageProcessor, AutoModel
|
|
from PIL import Image
|
|
import requests
|
|
|
|
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
print(image.height, image.width) # [480, 640]
|
|
|
|
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
|
|
model = AutoModel.from_pretrained('facebook/dinov2-base')
|
|
patch_size = model.config.patch_size
|
|
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
print(inputs.pixel_values.shape) # [1, 3, 224, 224]
|
|
batch_size, rgb, img_height, img_width = inputs.pixel_values.shape
|
|
num_patches_height, num_patches_width = img_height // patch_size, img_width // patch_size
|
|
num_patches_flat = num_patches_height * num_patches_width
|
|
|
|
outputs = model(**inputs)
|
|
last_hidden_states = outputs[0]
|
|
print(last_hidden_states.shape) # [1, 1 + 256, 768]
|
|
assert last_hidden_states.shape == (batch_size, 1 + num_patches_flat, model.config.hidden_size)
|
|
|
|
cls_token = last_hidden_states[:, 0, :]
|
|
patch_features = last_hidden_states[:, 1:, :].unflatten(1, (num_patches_height, num_patches_width))
|
|
```
|
|
|
|
- Use [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html) to speedup inference.
|
|
However, it will produce some mismatched elements. The difference between the original and traced model is 1e-4.
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoImageProcessor, AutoModel
|
|
from PIL import Image
|
|
import requests
|
|
|
|
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
|
|
model = AutoModel.from_pretrained('facebook/dinov2-base')
|
|
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
outputs = model(**inputs)
|
|
last_hidden_states = outputs[0]
|
|
|
|
# We have to force return_dict=False for tracing
|
|
model.config.return_dict = False
|
|
|
|
with torch.no_grad():
|
|
traced_model = torch.jit.trace(model, [inputs.pixel_values])
|
|
traced_outputs = traced_model(inputs.pixel_values)
|
|
|
|
print((last_hidden_states - traced_outputs[0]).abs().max())
|
|
```
|
|
|
|
## Dinov2Config
|
|
|
|
[[autodoc]] Dinov2Config
|
|
|
|
<frameworkcontent>
|
|
<pt>
|
|
|
|
## Dinov2Model
|
|
|
|
[[autodoc]] Dinov2Model
|
|
- forward
|
|
|
|
## Dinov2ForImageClassification
|
|
|
|
[[autodoc]] Dinov2ForImageClassification
|
|
- forward
|
|
|
|
</pt>
|
|
<jax>
|
|
|
|
## FlaxDinov2Model
|
|
|
|
[[autodoc]] FlaxDinov2Model
|
|
- __call__
|
|
|
|
|
|
## FlaxDinov2ForImageClassification
|
|
|
|
[[autodoc]] FlaxDinov2ForImageClassification
|
|
- __call__
|
|
|
|
</jax>
|
|
</frameworkcontent>
|