PyTorch Flax FlashAttention SDPA
# DINOv2 [DINOv2](https://huggingface.co/papers/2304.07193) is a vision foundation model that uses [ViT](./vit) as a feature extractor for multiple downstream tasks like image classification and depth estimation. It focuses on stabilizing and accelerating training through techniques like a faster memory-efficient attention, sequence packing, improved stochastic depth, Fully Sharded Data Parallel (FSDP), and model distillation. You can find all the original DINOv2 checkpoints under the [Dinov2](https://huggingface.co/collections/facebook/dinov2-6526c98554b3d2576e071ce3) collection. > [!TIP] > Click on the DINOv2 models in the right sidebar for more examples of how to apply DINOv2 to different vision tasks. The example below demonstrates how to obtain an image embedding with [`Pipeline`] or the [`AutoModel`] class. ```py import torch from transformers import pipeline pipe = pipeline( task="image-classification", model="facebook/dinov2-small-imagenet1k-1-layer", torch_dtype=torch.float16, device=0 ) pipe("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg") ``` ```py import requests from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("facebook/dinov2-small-imagenet1k-1-layer") model = AutoModelForImageClassification.from_pretrained( "facebook/dinov2-small-imagenet1k-1-layer", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa" ) inputs = processor(images=image, return_tensors="pt") logits = model(**inputs).logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends. The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4. ```py # pip install torchao import requests from transformers import TorchAoConfig, AutoImageProcessor, AutoModelForImageClassification from torchao.quantization import Int4WeightOnlyConfig from PIL import Image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-giant-imagenet1k-1-layer') quant_config = Int4WeightOnlyConfig(group_size=128) quantization_config = TorchAoConfig(quant_type=quant_config) model = AutoModelForImageClassification.from_pretrained( 'facebook/dinov2-giant-imagenet1k-1-layer', torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config ) inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` ## Notes - The example below shows how to split the output tensor into: - one embedding for the whole image, commonly referred to as a `CLS` token, useful for classification and retrieval - a set of local embeddings, one for each `14x14` patch of the input image, useful for dense tasks, such as semantic segmentation ```py from transformers import AutoImageProcessor, AutoModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) print(image.height, image.width) # [480, 640] processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base') model = AutoModel.from_pretrained('facebook/dinov2-base') patch_size = model.config.patch_size inputs = processor(images=image, return_tensors="pt") print(inputs.pixel_values.shape) # [1, 3, 224, 224] batch_size, rgb, img_height, img_width = inputs.pixel_values.shape num_patches_height, num_patches_width = img_height // patch_size, img_width // patch_size num_patches_flat = num_patches_height * num_patches_width outputs = model(**inputs) last_hidden_states = outputs[0] print(last_hidden_states.shape) # [1, 1 + 256, 768] assert last_hidden_states.shape == (batch_size, 1 + num_patches_flat, model.config.hidden_size) cls_token = last_hidden_states[:, 0, :] patch_features = last_hidden_states[:, 1:, :].unflatten(1, (num_patches_height, num_patches_width)) ``` - Use [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html) to speedup inference. However, it will produce some mismatched elements. The difference between the original and traced model is 1e-4. ```py import torch from transformers import AutoImageProcessor, AutoModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base') model = AutoModel.from_pretrained('facebook/dinov2-base') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs[0] # We have to force return_dict=False for tracing model.config.return_dict = False with torch.no_grad(): traced_model = torch.jit.trace(model, [inputs.pixel_values]) traced_outputs = traced_model(inputs.pixel_values) print((last_hidden_states - traced_outputs[0]).abs().max()) ``` ## Dinov2Config [[autodoc]] Dinov2Config ## Dinov2Model [[autodoc]] Dinov2Model - forward ## Dinov2ForImageClassification [[autodoc]] Dinov2ForImageClassification - forward ## FlaxDinov2Model [[autodoc]] FlaxDinov2Model - __call__ ## FlaxDinov2ForImageClassification [[autodoc]] FlaxDinov2ForImageClassification - __call__