transformers/docs/source/en/quantization/finegrained_fp8.md
Steven Liu c0f8d055ce
[docs] Redesign (#31757)
* toctree

* not-doctested.txt

* collapse sections

* feedback

* update

* rewrite get started sections

* fixes

* fix

* loading models

* fix

* customize models

* share

* fix link

* contribute part 1

* contribute pt 2

* fix toctree

* tokenization pt 1

* Add new model (#32615)

* v1 - working version

* fix

* fix

* fix

* fix

* rename to correct name

* fix title

* fixup

* rename files

* fix

* add copied from on tests

* rename to `FalconMamba` everywhere and fix bugs

* fix quantization + accelerate

* fix copies

* add `torch.compile` support

* fix tests

* fix tests and add slow tests

* copies on config

* merge the latest changes

* fix tests

* add few lines about instruct

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* "to be not" -> "not to be" (#32636)

* "to be not" -> "not to be"

* Update sam.md

* Update trainer.py

* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py

* fix hfoption tag

* tokenization pt. 2

* image processor

* fix toctree

* backbones

* feature extractor

* fix file name

* processor

* update not-doctested

* update

* make style

* fix toctree

* revision

* make fixup

* fix toctree

* fix

* make style

* fix hfoption tag

* pipeline

* pipeline gradio

* pipeline web server

* add pipeline

* fix toctree

* not-doctested

* prompting

* llm optims

* fix toctree

* fixes

* cache

* text generation

* fix

* chat pipeline

* chat stuff

* xla

* torch.compile

* cpu inference

* toctree

* gpu inference

* agents and tools

* gguf/tiktoken

* finetune

* toctree

* trainer

* trainer pt 2

* optims

* optimizers

* accelerate

* parallelism

* fsdp

* update

* distributed cpu

* hardware training

* gpu training

* gpu training 2

* peft

* distrib debug

* deepspeed 1

* deepspeed 2

* chat toctree

* quant pt 1

* quant pt 2

* fix toctree

* fix

* fix

* quant pt 3

* quant pt 4

* serialization

* torchscript

* scripts

* tpu

* review

* model addition timeline

* modular

* more reviews

* reviews

* fix toctree

* reviews reviews

* continue reviews

* more reviews

* modular transformers

* more review

* zamba2

* fix

* all frameworks

* pytorch

* supported model frameworks

* flashattention

* rm check_table

* not-doctested.txt

* rm check_support_list.py

* feedback

* updates/feedback

* review

* feedback

* fix

* update

* feedback

* updates

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-03-03 10:33:46 -08:00

2.9 KiB

Fine-grained FP8

Fine-grained FP8 quantization quantizes the weights and activations to fp8.

  • The weights are quantized to 8-bits for each 2D block (weight_block_size=(128, 128)).
  • The activations are quantized to 8-bits for each group per token. The group value matches the weights in the input channel (128 by default).

FP8 quantization enables support for DeepSeek-V3 and DeepSeek-R1.

Tip

You need a GPU with Compute Capability>=9 (H100), and install a PyTorch version compatible with the CUDA version of your GPU.

Install Accelerate and upgrade to the latest version of PyTorch.

pip install --upgrade accelerate torch

Create a [FineGrainedFP8Config] class and pass it to [~PreTrainedModel.from_pretrained] to quantize it. The weights are loaded in full precision (torch.float32) by default regardless of the actual data type the weights are stored in. Set torch_dtype="auto" to load the weights in the data type defined in a models config.json file to automatically load the most memory-optiomal data type.

from transformers import FineGrainedFP8Config, AutoModelForCausalLM, AutoTokenizer

model_name = "meta-llama/Meta-Llama-3-8B"
quantization_config = FineGrainedFP8Config()
quantized_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", quantization_config=quantization_config)

tokenizer = AutoTokenizer.from_pretrained(model_name)
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

output = quantized_model.generate(**input_ids, max_new_tokens=10)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Use [~PreTrainedModel.save_pretrained] to save the quantized model and reload it with [~PreTrainedModel.from_pretrained].

quant_path = "/path/to/save/quantized/model"
model.save_pretrained(quant_path)
model = AutoModelForCausalLM.from_pretrained(quant_path, device_map="auto")