# Fine-grained FP8
Fine-grained FP8 quantization quantizes the weights and activations to fp8.
- The weights are quantized to 8-bits for each 2D block (`weight_block_size=(128, 128)`).
- The activations are quantized to 8-bits for each group per token. The group value matches the weights in the input channel (128 by default).
FP8 quantization enables support for [DeepSeek-V3](https://hf.co/papers/2412.19437) and DeepSeek-R1.
> [!TIP]
> You need a GPU with Compute Capability>=9 (H100), and install a PyTorch version compatible with the CUDA version of your GPU.
Install Accelerate and upgrade to the latest version of PyTorch.
```bash
pip install --upgrade accelerate torch
```
Create a [`FineGrainedFP8Config`] class and pass it to [`~PreTrainedModel.from_pretrained`] to quantize it. The weights are loaded in full precision (`torch.float32`) by default regardless of the actual data type the weights are stored in. Set `torch_dtype="auto"` to load the weights in the data type defined in a models `config.json` file to automatically load the most memory-optiomal data type.
```py
from transformers import FineGrainedFP8Config, AutoModelForCausalLM, AutoTokenizer
model_name = "meta-llama/Meta-Llama-3-8B"
quantization_config = FineGrainedFP8Config()
quantized_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
output = quantized_model.generate(**input_ids, max_new_tokens=10)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Use [`~PreTrainedModel.save_pretrained`] to save the quantized model and reload it with [`~PreTrainedModel.from_pretrained`].
```py
quant_path = "/path/to/save/quantized/model"
model.save_pretrained(quant_path)
model = AutoModelForCausalLM.from_pretrained(quant_path, device_map="auto")
```