mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* Edited zoedepth model card according to specifications. * Edited Zoedepth model file * made suggested changes.
125 lines
4.8 KiB
Markdown
125 lines
4.8 KiB
Markdown
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# ZoeDepth
|
|
|
|
[ZoeDepth](https://huggingface.co/papers/2302.12288) is a depth estimation model that combines the generalization performance of relative depth estimation (how far objects are from each other) and metric depth estimation (precise depth measurement on metric scale) from a single image. It is pre-trained on 12 datasets using relative depth and 2 datasets (NYU Depth v2 and KITTI) for metric accuracy. A lightweight head with a metric bin module for each domain is used, and during inference, it automatically selects the appropriate head for each input image with a latent classifier.
|
|
|
|
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png"
|
|
alt="drawing" width="600"/>
|
|
|
|
You can find all the original ZoeDepth checkpoints under the [Intel](https://huggingface.co/Intel?search=zoedepth) organization.
|
|
|
|
The example below demonstrates how to estimate depth with [`Pipeline`] or the [`AutoModel`] class.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import requests
|
|
import torch
|
|
from transformers import pipeline
|
|
from PIL import Image
|
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
pipeline = pipeline(
|
|
task="depth-estimation",
|
|
model="Intel/zoedepth-nyu-kitti",
|
|
torch_dtype=torch.float16,
|
|
device=0
|
|
)
|
|
results = pipeline(image)
|
|
results["depth"]
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
import requests
|
|
from PIL import Image
|
|
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
|
|
|
|
image_processor = AutoImageProcessor.from_pretrained(
|
|
"Intel/zoedepth-nyu-kitti"
|
|
)
|
|
model = AutoModelForDepthEstimation.from_pretrained(
|
|
"Intel/zoedepth-nyu-kitti",
|
|
device_map="auto"
|
|
)
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(inputs)
|
|
|
|
# interpolate to original size and visualize the prediction
|
|
## ZoeDepth dynamically pads the input image, so pass the original image size as argument
|
|
## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
|
|
post_processed_output = image_processor.post_process_depth_estimation(
|
|
outputs,
|
|
source_sizes=[(image.height, image.width)],
|
|
)
|
|
|
|
predicted_depth = post_processed_output[0]["predicted_depth"]
|
|
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
|
depth = depth.detach().cpu().numpy() * 255
|
|
Image.fromarray(depth.astype("uint8"))
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
## Notes
|
|
|
|
- In the [original implementation](https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131) ZoeDepth performs inference on both the original and flipped images and averages the results. The `post_process_depth_estimation` function handles this by passing the flipped outputs to the optional `outputs_flipped` argument as shown below.
|
|
```py
|
|
with torch.no_grad():
|
|
outputs = model(pixel_values)
|
|
outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
|
|
post_processed_output = image_processor.post_process_depth_estimation(
|
|
outputs,
|
|
source_sizes=[(image.height, image.width)],
|
|
outputs_flipped=outputs_flipped,
|
|
)
|
|
```
|
|
|
|
## Resources
|
|
- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth) for an inference example.
|
|
|
|
## ZoeDepthConfig
|
|
|
|
[[autodoc]] ZoeDepthConfig
|
|
|
|
## ZoeDepthImageProcessor
|
|
|
|
[[autodoc]] ZoeDepthImageProcessor
|
|
- preprocess
|
|
|
|
## ZoeDepthForDepthEstimation
|
|
|
|
[[autodoc]] ZoeDepthForDepthEstimation
|
|
- forward |