mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* documenation finished * Update dit.md --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
97 lines
6.6 KiB
Markdown
97 lines
6.6 KiB
Markdown
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
|
">
|
|
</div>
|
|
</div>
|
|
|
|
# DiT
|
|
|
|
[DiT](https://huggingface.co/papers/2203.02378) is an image transformer pretrained on large-scale unlabeled document images. It learns to predict the missing visual tokens from a corrupted input image. The pretrained DiT model can be used as a backbone in other models for visual document tasks like document image classification and table detection.
|
|
|
|
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dit_architecture.jpg"/>
|
|
|
|
You can find all the original DiT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=dit) organization.
|
|
|
|
> [!TIP]
|
|
> Refer to the [BEiT](./beit) docs for more examples of how to apply DiT to different vision tasks.
|
|
|
|
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipeline = pipeline(
|
|
task="image-classification",
|
|
model="microsoft/dit-base-finetuned-rvlcdip",
|
|
torch_dtype=torch.float16,
|
|
device=0
|
|
)
|
|
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dit-example.jpg")
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
import requests
|
|
from PIL import Image
|
|
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
|
|
|
image_processor = AutoImageProcessor.from_pretrained(
|
|
"microsoft/dit-base-finetuned-rvlcdip",
|
|
use_fast=True,
|
|
)
|
|
model = AutoModelForImageClassification.from_pretrained(
|
|
"microsoft/dit-base-finetuned-rvlcdip",
|
|
device_map="auto",
|
|
)
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dit-example.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
|
|
|
with torch.no_grad():
|
|
logits = model(**inputs).logits
|
|
predicted_class_id = logits.argmax(dim=-1).item()
|
|
|
|
class_labels = model.config.id2label
|
|
predicted_class_label = class_labels[predicted_class_id]
|
|
print(f"The predicted class label is: {predicted_class_label}")
|
|
```
|
|
|
|
</hfoption>
|
|
|
|
## Notes
|
|
|
|
- The pretrained DiT weights can be loaded in a [BEiT] model with a modeling head to predict visual tokens.
|
|
```py
|
|
from transformers import BeitForMaskedImageModeling
|
|
|
|
model = BeitForMaskedImageModeling.from_pretraining("microsoft/dit-base")
|
|
```
|
|
|
|
## Resources
|
|
|
|
- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DiT/Inference_with_DiT_(Document_Image_Transformer)_for_document_image_classification.ipynb) for a document image classification inference example.
|