mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 17:48:22 +06:00

* Rename index.mdx to index.md * With saved modifs * Address review comment * Treat all files * .mdx -> .md * Remove special char * Update utils/tests_fetcher.py Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr> --------- Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2.6 KiB
2.6 KiB
BertJapanese
Overview
The BERT models trained on Japanese text.
There are models with two different tokenization methods:
- Tokenize with MeCab and WordPiece. This requires some extra dependencies, fugashi which is a wrapper around MeCab.
- Tokenize into characters.
To use MecabTokenizer, you should pip install transformers["ja"]
(or pip install -e .["ja"]
if you install
from source) to install dependencies.
See details on cl-tohoku repository.
Example of using a model with MeCab and WordPiece tokenization:
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese")
>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"
>>> inputs = tokenizer(line, return_tensors="pt")
>>> print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾輩 は 猫 で ある 。 [SEP]
>>> outputs = bertjapanese(**inputs)
Example of using a model with Character tokenization:
>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese-char")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-char")
>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"
>>> inputs = tokenizer(line, return_tensors="pt")
>>> print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾 輩 は 猫 で あ る 。 [SEP]
>>> outputs = bertjapanese(**inputs)
Tips:
- This implementation is the same as BERT, except for tokenization method. Refer to the documentation of BERT for more usage examples.
This model was contributed by cl-tohoku.
BertJapaneseTokenizer
autodoc BertJapaneseTokenizer