transformers/docs/source/en/model_doc/granitemoehybrid.md
Sukriti Sharma 471958b620
Add GraniteMoeHybrid support for 4.0 (#37658)
* initial config and MLA layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at decoder

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* completion of layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* modeling class

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* adding hybrid class to imports

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix imports granitemoehybrid

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix granitehybrid imports

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix granitehybrid import

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix generated modeling file

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* add some comments

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* minor fixes in layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* add sharedMLP layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* correct layer names

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fixes in mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* change name of MLP layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix seq mizer layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* correct mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fixes in param names

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* enable hybrid model

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* update config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix config granite hybrid

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix attention layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* cleanup to re-use mamba code

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* keep layer types

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* attention bias cleanup

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* update mamba layer name

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at tests

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at tests

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* use granite attention

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix: self attn weights

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* pass at making pos_emb optional

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* initialize self_attn only as needed

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* overwrite forward to create HybridMambaCache

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* Log invalid layer types

* Add attention outputs test

* Only emit attentions/logits if not None

* Fix config test hidden size divisibility

* mark granitmoehybrid as stateful

* Initialize mamba convolutional layers

* Formatting fixes

* config docstring, removed some unused attrs

* Fix missing arg in models test

* Fix create and check decoder model test

* support logits to keep in granitemoe

* regen to pass logits_to_keep

* Allow None or rope

* Fix gradient checkpointing

* Add granitemoehybrid as special cache for generate check

* Remove unused MLA refs

* Fix mamba layer mask

* Remove logits to keep from config

* Minor docstring nits

* Update licenses

* Enable cache by default

* map layer types to layer block type

* First pass at granite moe hybrid docs

* Ignore granite moe hybrid in valid checkpoint check

* Align attention interfaces

* regenerate modular granitemoeshared attention interface

* Align granite moe hybrid attn interface

* run formatting

* Handle mamba initialization

* avoid conditional attr defs

* Move hybrid layer validation to config

* Add placeholder integration tests

* Docs nits / Update model names

* Clean up forward conditions

* Use gradient checkpointing layer

* Remove some copied bamba tests + inherit

align test init

delete more tests

Use common layer init with bamba tests

finish test consolidation

* avoid redundant intermediate std var

* use @can_return_tuple

* Remove unused moe state

* make skipped test names consistent

* Fix docstring order

* Add missing toc

* Always create the shared mlp

* Fix name in docstring

* link preview model in docs

---------

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>
Co-authored-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-05-06 06:47:43 +02:00

2.1 KiB

GraniteMoeHybrid

Overview

The GraniteMoeHybrid model builds on top of GraniteMoeSharedModel and Bamba. Its decoding layers consist of state space layers or MoE attention layers with shared experts. By default, the attention layers do not use positional encoding.

from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "ibm-granite/granite-4.0-tiny-preview"
tokenizer = AutoTokenizer.from_pretrained(model_path)

# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
model.eval()

# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."

# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
    print(i)

This HF implementation is contributed by Sukriti Sharma and Alexander Brooks.

GraniteMoeHybridConfig

autodoc GraniteMoeHybridConfig

GraniteMoeHybridModel

autodoc GraniteMoeHybridModel - forward

GraniteMoeHybridForCausalLM

autodoc GraniteMoeHybridForCausalLM - forward