Add GraniteMoeHybrid support for 4.0 (#37658)

* initial config and MLA layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at decoder

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* completion of layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* modeling class

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* adding hybrid class to imports

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix imports granitemoehybrid

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix granitehybrid imports

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix granitehybrid import

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix generated modeling file

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* add some comments

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* minor fixes in layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* add sharedMLP layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* correct layer names

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fixes in mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* change name of MLP layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix seq mizer layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* correct mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fixes in param names

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* enable hybrid model

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* update config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix config granite hybrid

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix attention layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* cleanup to re-use mamba code

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* keep layer types

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* attention bias cleanup

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* update mamba layer name

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at tests

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at tests

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* use granite attention

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix: self attn weights

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* pass at making pos_emb optional

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* initialize self_attn only as needed

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* overwrite forward to create HybridMambaCache

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* Log invalid layer types

* Add attention outputs test

* Only emit attentions/logits if not None

* Fix config test hidden size divisibility

* mark granitmoehybrid as stateful

* Initialize mamba convolutional layers

* Formatting fixes

* config docstring, removed some unused attrs

* Fix missing arg in models test

* Fix create and check decoder model test

* support logits to keep in granitemoe

* regen to pass logits_to_keep

* Allow None or rope

* Fix gradient checkpointing

* Add granitemoehybrid as special cache for generate check

* Remove unused MLA refs

* Fix mamba layer mask

* Remove logits to keep from config

* Minor docstring nits

* Update licenses

* Enable cache by default

* map layer types to layer block type

* First pass at granite moe hybrid docs

* Ignore granite moe hybrid in valid checkpoint check

* Align attention interfaces

* regenerate modular granitemoeshared attention interface

* Align granite moe hybrid attn interface

* run formatting

* Handle mamba initialization

* avoid conditional attr defs

* Move hybrid layer validation to config

* Add placeholder integration tests

* Docs nits / Update model names

* Clean up forward conditions

* Use gradient checkpointing layer

* Remove some copied bamba tests + inherit

align test init

delete more tests

Use common layer init with bamba tests

finish test consolidation

* avoid redundant intermediate std var

* use @can_return_tuple

* Remove unused moe state

* make skipped test names consistent

* Fix docstring order

* Add missing toc

* Always create the shared mlp

* Fix name in docstring

* link preview model in docs

---------

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>
Co-authored-by: Alex-Brooks <Alex.Brooks@ibm.com>
This commit is contained in:
Sukriti Sharma 2025-05-05 22:47:43 -06:00 committed by GitHub
parent fe29b8c487
commit 471958b620
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 3150 additions and 544 deletions

View File

@ -495,6 +495,8 @@
title: Granite
- local: model_doc/granitemoe
title: GraniteMoe
- local: model_doc/granitemoehybrid
title: GraniteMoeHybrid
- local: model_doc/granitemoeshared
title: GraniteMoeShared
- local: model_doc/helium

View File

@ -0,0 +1,64 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# GraniteMoeHybrid
## Overview
The `GraniteMoeHybrid` model builds on top of `GraniteMoeSharedModel` and `Bamba`. Its decoding layers consist of state space layers or MoE attention layers with shared experts. By default, the attention layers do not use positional encoding.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "ibm-granite/granite-4.0-tiny-preview"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
model.eval()
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
```
This HF implementation is contributed by [Sukriti Sharma](https://huggingface.co/SukritiSharma) and [Alexander Brooks](https://huggingface.co/abrooks9944).
## GraniteMoeHybridConfig
[[autodoc]] GraniteMoeHybridConfig
## GraniteMoeHybridModel
[[autodoc]] GraniteMoeHybridModel
- forward
## GraniteMoeHybridForCausalLM
[[autodoc]] GraniteMoeHybridForCausalLM
- forward

View File

@ -129,6 +129,7 @@ if TYPE_CHECKING:
from .granite import *
from .granite_speech import *
from .granitemoe import *
from .granitemoehybrid import *
from .granitemoeshared import *
from .grounding_dino import *
from .groupvit import *

View File

@ -146,6 +146,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("granite", "GraniteConfig"),
("granite_speech", "GraniteSpeechConfig"),
("granitemoe", "GraniteMoeConfig"),
("granitemoehybrid", "GraniteMoeHybridConfig"),
("granitemoeshared", "GraniteMoeSharedConfig"),
("granitevision", "LlavaNextConfig"),
("graphormer", "GraphormerConfig"),
@ -509,6 +510,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("granite", "Granite"),
("granite_speech", "GraniteSpeech"),
("granitemoe", "GraniteMoeMoe"),
("granitemoehybrid", "GraniteMoeHybrid"),
("granitemoeshared", "GraniteMoeSharedMoe"),
("granitevision", "LLaVA-NeXT"),
("graphormer", "Graphormer"),

View File

@ -138,6 +138,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("gptsan-japanese", "GPTSanJapaneseForConditionalGeneration"),
("granite", "GraniteModel"),
("granitemoe", "GraniteMoeModel"),
("granitemoehybrid", "GraniteMoeHybridModel"),
("granitemoeshared", "GraniteMoeSharedModel"),
("graphormer", "GraphormerModel"),
("grounding-dino", "GroundingDinoModel"),
@ -558,6 +559,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("gptj", "GPTJForCausalLM"),
("granite", "GraniteForCausalLM"),
("granitemoe", "GraniteMoeForCausalLM"),
("granitemoehybrid", "GraniteMoeHybridForCausalLM"),
("granitemoeshared", "GraniteMoeSharedForCausalLM"),
("helium", "HeliumForCausalLM"),
("jamba", "JambaForCausalLM"),

View File

@ -854,6 +854,7 @@ class BambaMixer(nn.Module):
# Init cache
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
cache_params.has_previous_state = True
scan_output = self.norm(y, gate)

View File

@ -651,6 +651,7 @@ class BambaMixer(nn.Module):
# Init cache
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
cache_params.has_previous_state = True
scan_output = self.norm(y, gate)

View File

@ -166,6 +166,8 @@ class GraniteMoeConfig(PretrainedConfig):
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
# this model has rope embedding type, hardcoded for BC
self.position_embedding_type = "rope"
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout

View File

@ -13,25 +13,24 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
BaseModelOutputWithPast,
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
add_start_docstrings,
@ -439,10 +438,9 @@ class GraniteMoeAttention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # None or rope embeddings
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
@ -455,260 +453,75 @@ class GraniteMoeAttention(nn.Module):
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
cos, sin = position_embeddings if position_embeddings is not None else (None, None)
if position_embeddings is not None:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.granite.modeling_granite.GraniteFlashAttention2 with Granite->GraniteMoe
# TODO cyril: modular
class GraniteMoeFlashAttention2(GraniteMoeAttention):
"""
GraniteMoe flash attention module. This module inherits from `GraniteMoeAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (GraniteMoeRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
target_dtype = self.q_proj.weight.dtype
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
softmax_scale=self.scaling,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.granite.modeling_granite.GraniteSdpaAttention with Granite->GraniteMoe
# TODO cyril: modular
class GraniteMoeSdpaAttention(GraniteMoeAttention):
"""
GraniteMoe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`GraniteMoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
# Adapted from GraniteMoeAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"GraniteMoeModel is using GraniteMoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
bsz, q_len, _ = hidden_states.size()
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
scale=self.scaling,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
return attn_output, attn_weights
GRANITEMOE_ATTENTION_CLASSES = {
"eager": GraniteMoeAttention,
"flash_attention_2": GraniteMoeFlashAttention2,
"sdpa": GraniteMoeSdpaAttention,
}
class GraniteMoeDecoderLayer(nn.Module):
class GraniteMoeDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: GraniteMoeConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GRANITEMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.self_attn = GraniteMoeAttention(config=config, layer_idx=layer_idx)
self.block_sparse_moe = GraniteMoeMoE(config)
self.input_layernorm = GraniteMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GraniteMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
@ -827,13 +640,12 @@ class GraniteMoePreTrainedModel(PreTrainedModel):
_supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, GraniteMoeRMSNorm):
@ -947,8 +759,8 @@ class GraniteMoeModel(GraniteMoePreTrainedModel):
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
# rope
self.rotary_emb = GraniteMoeRotaryEmbedding(config)
self.position_embedding_type = config.position_embedding_type
self.rotary_emb = GraniteMoeRotaryEmbedding(config) if self.position_embedding_type == "rope" else None
# Initialize weights and apply final processing
self.post_init()
@ -1019,8 +831,10 @@ class GraniteMoeModel(GraniteMoePreTrainedModel):
# embed positions
hidden_states = inputs_embeds
position_embeddings = None
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
if self.rotary_emb is not None:
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
@ -1032,31 +846,17 @@ class GraniteMoeModel(GraniteMoePreTrainedModel):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
output_router_logits,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
output_router_logits=output_router_logits,
position_embeddings=position_embeddings,
)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
output_router_logits=output_router_logits,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
@ -1265,6 +1065,7 @@ class GraniteMoeForCausalLM(GraniteMoePreTrainedModel, GenerationMixin):
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
@ -1273,6 +1074,13 @@ class GraniteMoeForCausalLM(GraniteMoePreTrainedModel, GenerationMixin):
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
@ -1315,8 +1123,10 @@ class GraniteMoeForCausalLM(GraniteMoePreTrainedModel, GenerationMixin):
cache_position=cache_position,
)
# Only compute necessary logits
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
logits = logits / self.config.logits_scaling
loss = None

View File

@ -0,0 +1,29 @@
# coding=utf-8
# Copyright 2025 IBM and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_granitemoehybrid import *
from .modeling_granitemoehybrid import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -0,0 +1,256 @@
# coding=utf-8
# Copyright 2025 IBM and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GraniteMoeHybrid model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class GraniteMoeHybridConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GraniteMoeHybridConfig`]. It is used to
instantiate an GraniteMoeHybrid model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the GraniteMoeHybrid model. Defines the number of different tokens that
can be represented by the `inputs_ids` passed when calling [`GraniteMoeHybridModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Only relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier.
logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits.
residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier.
attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier.
num_local_experts (`int`, *optional*, defaults to 8): total number of experts.
num_experts_per_tok (`int`, *optional*, defaults to 2): number of experts per token.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): router auxialiary loss coefficient
shared_intermediate_size (`int`, *optional*, defaults to 1024): intermediate size for shared experts.
position_embedding_type (`str`, *optional*): Positional embedding
type to be used; defaults to None. Allowed options: `[None, "rope"]`
layer_types (`List`, *optional*): list of strings to be used as layer types.
Allowed choices: "mamba", "attention".
mamba_n_heads (`int`, *optional*, defaults to 128):
The number of mamba heads used.
mamba_n_groups (`int`, *optional*, defaults to 1):
The number of the mamba groups used.
mamba_d_state (`int`, *optional*, defaults to 256):
The dimension the mamba latent state space.
mamba_d_head (`int`, *optional*, defaults to `"auto"`):
Head embedding dimension size.
mamba_d_conv (`int`, *optional*, defaults to 4):
The size of the mamba convolution kernel.
mamba_expand (`int`, *optional*, defaults to 2):
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size.
mamba_chunk_size (`int`, *optional*, defaults to 256):
The chunks in which to break the sequence when doing prefill/training.
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"])
of the mamba mixer block.
```python
>>> from transformers import GraniteMoeHybridModel, GraniteMoeHybridConfig
>>> # Initializing a GraniteMoeHybrid config
>>> configuration = GraniteMoeHybridConfig()
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "granitemoehybrid"
attribute_map = {
"layers_block_type": "layer_types",
}
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
embedding_multiplier=1.0,
logits_scaling=1.0,
residual_multiplier=1.0,
attention_multiplier=1.0,
num_local_experts=8,
num_experts_per_tok=2,
output_router_logits=False,
router_aux_loss_coef=0.001,
shared_intermediate_size=1024,
position_embedding_type=None,
layer_types=None,
mamba_n_heads=128,
mamba_n_groups=1,
mamba_d_state=256,
mamba_d_head="auto",
mamba_d_conv=4,
mamba_expand=2,
mamba_chunk_size=256,
mamba_conv_bias=True,
mamba_proj_bias=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.embedding_multiplier = embedding_multiplier
self.logits_scaling = logits_scaling
self.residual_multiplier = residual_multiplier
self.attention_multiplier = attention_multiplier
self.attention_dropout = attention_dropout
self.num_local_experts = num_local_experts
self.num_experts_per_tok = num_experts_per_tok
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.shared_intermediate_size = shared_intermediate_size
self.position_embedding_type = position_embedding_type
mamba_intermediate = mamba_expand * hidden_size
if layer_types is not None and any(layer_type not in ["mamba", "attention"] for layer_type in layer_types):
raise ValueError("layer_types must be a list strings in [`mamba` `attention`]")
if mamba_intermediate % mamba_n_heads != 0:
raise ValueError("mamba_n_heads must divide mamba_expand * hidden_size")
# for the mamba_v2, must satisfy the following
if mamba_d_head == "auto":
mamba_d_head = mamba_intermediate // mamba_n_heads
if mamba_d_head * mamba_n_heads != mamba_intermediate:
raise ValueError("The dimensions for the Mamba head state do not match the model intermediate_size")
self.mamba_n_heads = mamba_n_heads
self.mamba_d_head = mamba_d_head
self.mamba_n_groups = mamba_n_groups
self.mamba_d_state = mamba_d_state
self.mamba_d_conv = mamba_d_conv
self.mamba_chunk_size = mamba_chunk_size
self.mamba_conv_bias = mamba_conv_bias
self.mamba_proj_bias = mamba_proj_bias
self.mamba_expand = mamba_expand
self.layer_types = layer_types
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
if self.position_embedding_type == "rope":
rope_config_validation(self)
# overwrite the function to use in `HybridMambaAttentionDynamicCache`
@property
def layers_block_type(self):
return self.layer_types if self.layer_types else ["mamba"] * self.num_hidden_layers
__all__ = ["GraniteMoeHybridConfig"]

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,510 @@
# coding=utf-8
# Copyright 2025 IBM and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from ...cache_utils import Cache
from ...modeling_outputs import BaseModelOutputWithPast, MoeModelOutputWithPast
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
)
from ..bamba.configuration_bamba import BambaConfig
from ..bamba.modeling_bamba import (
BambaMixer,
BambaRMSNormGated,
HybridMambaAttentionDynamicCache,
)
from ..granitemoeshared.modeling_granitemoeshared import (
GraniteMoeSharedAttention,
GraniteMoeSharedDecoderLayer,
GraniteMoeSharedForCausalLM,
GraniteMoeSharedMLP,
GraniteMoeSharedModel,
GraniteMoeSharedPreTrainedModel,
)
from .configuration_granitemoehybrid import GraniteMoeHybridConfig
logger = logging.get_logger(__name__)
class GraniteMoeHybridAttention(GraniteMoeSharedAttention):
def __init__(self, config: GraniteMoeHybridConfig, layer_idx: int):
super().__init__(config, layer_idx)
class GraniteMoeHybridMambaLayer(BambaMixer):
def __init__(self, config: GraniteMoeHybridConfig, layer_idx: int):
super().__init__(BambaConfig(config), layer_idx)
class GraniteMoeHybridRMSNormGated(BambaRMSNormGated):
def __init__(self, hidden_size, eps=1e-6):
super().__init__(hidden_size, eps)
class GraniteMoeHybridMLP(GraniteMoeSharedMLP):
def __init__(self, config: GraniteMoeHybridConfig):
super().__init__(config)
class GraniteMoeHybridDecoderLayer(GraniteMoeSharedDecoderLayer):
def __init__(self, config: GraniteMoeHybridConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.shared_mlp = GraniteMoeHybridMLP(config)
# Either attention or mamba will be initialized, depending on the layer type.
self.self_attn = None
self.mamba = None
if config.layers_block_type[layer_idx] == "mamba":
self.mamba = GraniteMoeHybridMambaLayer(config, layer_idx)
else:
self.self_attn = GraniteMoeHybridAttention(config, layer_idx)
self.layer_type = config.layers_block_type[layer_idx]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
output_router_logits: Optional[bool] = False,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
if self.mamba is not None:
hidden_states = self.mamba(
hidden_states=hidden_states,
cache_position=cache_position,
cache_params=past_key_value,
attention_mask=attention_mask,
)
# No attention weights for state space layers
self_attn_weights = None
else:
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states * self.residual_multiplier
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
moe_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
hidden_states = residual + hidden_states * self.residual_multiplier
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (past_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
GRANITEMOEHYBRID_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GraniteMoeHybridConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare GraniteMoeHybrid Model outputting raw hidden-states without any specific head on top.",
GRANITEMOEHYBRID_START_DOCSTRING,
)
class GraniteMoeHybridPreTrainedModel(GraniteMoeSharedPreTrainedModel):
config_class = GraniteMoeHybridConfig
_no_split_modules = ["GraniteMoeHybridDecoderLayer"]
_is_stateful = True
def _init_weights(self, module):
super()._init_weights()
# Initialize Mamba modules
if isinstance(module, (nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, GraniteMoeHybridMambaLayer):
module.dt_bias.data.fill_(1.0)
module.A_log.data = torch.log(torch.arange(1, module.num_heads + 1))
module.D.data.fill_(1.0)
elif isinstance(module, GraniteMoeHybridRMSNormGated):
module.weight.data.fill_(1.0)
GRANITEMOEHYBRID_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare GraniteMoeHybrid Model outputting raw hidden-states without any specific head on top.",
GRANITEMOEHYBRID_START_DOCSTRING,
)
class GraniteMoeHybridModel(GraniteMoeSharedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers.
Each layer is a [`GraniteMoeHybridDecoderLayer`]
Args:
config: GraniteMoeHybridConfig
"""
def __init__(self, config: GraniteMoeHybridConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[GraniteMoeHybridDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
@can_return_tuple
@add_start_docstrings_to_model_forward(GRANITEMOEHYBRID_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = inputs_embeds * self.embedding_multiplier
## overwritten because `HybridMambaAttentionDynamicCache` is needed
if use_cache and past_key_values is None:
logger.warning_once(
"GraniteMoeHybrid requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. "
"Because one was not provided, no cache will be returned."
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
# embed positions
hidden_states = inputs_embeds
position_embeddings = None
# create position embeddings to be shared across the decoder layers
if self.rotary_emb is not None:
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
# Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
layer_mask = mamba_mask if decoder_layer.layer_type == "mamba" else causal_mask
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=layer_mask,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
output_router_logits=output_router_logits,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
if layer_outputs[1] is not None:
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
all_self_attns += (layer_outputs[1],)
if output_router_logits:
if layer_outputs[-1] is not None:
# append router logits only of expert layers. Regular MLP layers return `None` as the router logits
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
def _update_mamba_mask(self, attention_mask, cache_position):
"""
No need for zeroing states when
1. Cached forward
2. Attending to all inputs
"""
mamba_mask = attention_mask
if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
mamba_mask = None
return mamba_mask
class GraniteMoeHybridForCausalLM(GraniteMoeSharedForCausalLM):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: GraniteMoeHybridConfig):
super().__init__(config)
self.model = GraniteMoeHybridModel(config)
# Initialize weights and apply final processing
self.post_init()
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
# Overwritten -- has a unique cache type, `HybridMambaAttentionDynamicCache`
empty_past_kv = past_key_values is None
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
# (we can't check exception 3 while compiling)
if not empty_past_kv:
if (
inputs_embeds is not None # Exception 1
or cache_position[-1] >= input_ids.shape[1] # Exception 3
):
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
else:
past_key_values = HybridMambaAttentionDynamicCache(
self.config, input_ids.shape[0], self.dtype, device=self.device
)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if not empty_past_kv:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and empty_past_kv:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"cache_position": cache_position,
}
)
return model_inputs
def _supports_default_dynamic_cache(self) -> bool:
"""
Function overwritten as this class uses its own `HybridMambaAttentionDynamicCache`
and do not need to initialize the Cache in advance in order to save memory
(because no back and forth `to_legacy_cache` and `from_legacy_cache` will be performed
for `HybridMambaAttentionDynamicCache`).
"""
return False
__all__ = ["GraniteMoeHybridForCausalLM", "GraniteMoeHybridModel", "GraniteMoeHybridPreTrainedModel"]

View File

@ -169,6 +169,8 @@ class GraniteMoeSharedConfig(PretrainedConfig):
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
# this model has rope embedding type, hardcoded for BC
self.position_embedding_type = "rope"
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout

View File

@ -19,7 +19,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
@ -29,10 +29,10 @@ from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast, MoeCausalLMOutputWithPast, MoeModelOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
@ -300,6 +300,33 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
# copied from transformers.models.granite.modeling_granite.GraniteAttention with Granite->GraniteMoeShared
# no longer copied after attention refactors
class GraniteMoeSharedAttention(nn.Module):
@ -343,10 +370,9 @@ class GraniteMoeSharedAttention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # None or rope embeddings
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
@ -359,262 +385,48 @@ class GraniteMoeSharedAttention(nn.Module):
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
cos, sin = position_embeddings if position_embeddings is not None else (None, None)
if position_embeddings is not None:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.granite.modeling_granite.GraniteFlashAttention2 with Granite->GraniteMoeShared
# TODO cyril: modular
class GraniteMoeSharedFlashAttention2(GraniteMoeSharedAttention):
"""
GraniteMoeShared flash attention module. This module inherits from `GraniteMoeSharedAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (GraniteMoeSharedRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
target_dtype = self.q_proj.weight.dtype
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
softmax_scale=self.scaling,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.granite.modeling_granite.GraniteSdpaAttention with Granite->GraniteMoeShared
# TODO cyril: modular
class GraniteMoeSharedSdpaAttention(GraniteMoeSharedAttention):
"""
GraniteMoeShared attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`GraniteMoeSharedAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from GraniteMoeSharedAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"GraniteMoeSharedModel is using GraniteMoeSharedSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
scale=self.scaling,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
GRANITEMOESHARED_ATTENTION_CLASSES = {
"eager": GraniteMoeSharedAttention,
"flash_attention_2": GraniteMoeSharedFlashAttention2,
"sdpa": GraniteMoeSharedSdpaAttention,
}
class GraniteMoeSharedDecoderLayer(nn.Module):
class GraniteMoeSharedDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: GraniteMoeSharedConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GRANITEMOESHARED_ATTENTION_CLASSES[config._attn_implementation](
config=config, layer_idx=layer_idx
)
self.self_attn = GraniteMoeSharedAttention(config=config, layer_idx=layer_idx)
self.block_sparse_moe = GraniteMoeSharedMoE(config)
self.input_layernorm = GraniteMoeSharedRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GraniteMoeSharedRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
@ -632,7 +444,7 @@ class GraniteMoeSharedDecoderLayer(nn.Module):
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
output_router_logits: Optional[bool] = False,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
@ -739,13 +551,12 @@ class GraniteMoeSharedPreTrainedModel(PreTrainedModel):
_supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, GraniteMoeSharedRMSNorm):
@ -893,8 +704,8 @@ class GraniteMoeSharedModel(GraniteMoeSharedPreTrainedModel):
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
# rope
self.rotary_emb = GraniteMoeSharedRotaryEmbedding(config)
self.position_embedding_type = config.position_embedding_type
self.rotary_emb = GraniteMoeSharedRotaryEmbedding(config) if self.position_embedding_type == "rope" else None
# Initialize weights and apply final processing
self.post_init()
@ -965,8 +776,10 @@ class GraniteMoeSharedModel(GraniteMoeSharedPreTrainedModel):
# embed positions
hidden_states = inputs_embeds
position_embeddings = None
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
if self.rotary_emb is not None:
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
@ -978,31 +791,17 @@ class GraniteMoeSharedModel(GraniteMoeSharedPreTrainedModel):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
output_router_logits,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
output_router_logits=output_router_logits,
position_embeddings=position_embeddings,
)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
output_router_logits=output_router_logits,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
@ -1291,6 +1090,7 @@ class GraniteMoeSharedForCausalLM(GraniteMoeSharedPreTrainedModel, GenerationMix
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
@ -1299,6 +1099,13 @@ class GraniteMoeSharedForCausalLM(GraniteMoeSharedPreTrainedModel, GenerationMix
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
@ -1341,8 +1148,10 @@ class GraniteMoeSharedForCausalLM(GraniteMoeSharedPreTrainedModel, GenerationMix
cache_position=cache_position,
)
# Only compute necessary logits
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
logits = logits / self.config.logits_scaling
loss = None

View File

@ -16,7 +16,6 @@
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
@ -78,7 +77,7 @@ class GraniteMoeSharedDecoderLayer(GraniteMoeDecoderLayer):
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
output_router_logits: Optional[bool] = False,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""

View File

@ -2491,6 +2491,7 @@ class GenerationTesterMixin:
"bamba",
"ctrl",
"fsmt",
"granitemoehybrid",
"gptbigcode",
"mega",
"reformer",

View File

@ -47,6 +47,11 @@ if is_torch_available():
class BambaModelTester:
config_class = BambaConfig
if is_torch_available():
model_class = BambaModel
for_causal_lm_class = BambaForCausalLM
def __init__(
self,
parent,
@ -118,6 +123,7 @@ class BambaModelTester:
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
self._update_layer_configs()
config = self.get_config()
return config, input_ids, input_mask, token_labels
@ -133,10 +139,12 @@ class BambaModelTester:
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
def get_config(self):
def _update_layer_configs(self):
"""Configures hidden layers and attn layer indices if they are not set."""
# Fix for SDPA tests, force at least 4 layers
if self.num_hidden_layers < 4:
self.num_hidden_layers = 4
if self.attn_layer_indices is None:
d = [x for x in range(2, self.num_hidden_layers) if self.num_hidden_layers % x == 0]
if len(d) == 0:
@ -144,7 +152,8 @@ class BambaModelTester:
d = d[-1] # get the largest divisor
self.attn_layer_indices = [x + 1 for x in range(0, self.num_hidden_layers, d)]
return BambaConfig(
def get_config(self, **kwargs):
return self.config_class(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
@ -164,6 +173,7 @@ class BambaModelTester:
mamba_d_conv=self.mamba_d_conv,
mamba_expand=self.mamba_expand,
mamba_chunk_size=self.mamba_chunk_size,
**kwargs,
)
def create_and_check_model(
@ -173,7 +183,7 @@ class BambaModelTester:
input_mask,
token_labels,
):
model = BambaModel(config=config)
model = self.model_class(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
@ -187,7 +197,7 @@ class BambaModelTester:
input_mask,
token_labels,
):
model = BambaForCausalLM(config=config)
model = self.for_causal_lm_class(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
@ -205,7 +215,7 @@ class BambaModelTester:
):
# config.is_decoder = True
# config.add_cross_attention = True
model = BambaForCausalLM(config=config)
model = self.for_causal_lm_class(config=config)
model.to(torch_device)
model.eval()
@ -258,6 +268,7 @@ class BambaModelTester:
@require_torch
class BambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
model_tester_class = BambaModelTester
all_model_classes = (BambaModel, BambaForCausalLM) if is_torch_available() else ()
pipeline_model_mapping = (
{
@ -276,8 +287,8 @@ class BambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixi
model_split_percents = [0.5, 0.7, 0.8]
def setUp(self):
self.model_tester = BambaModelTester(self)
self.config_tester = ConfigTester(self, config_class=BambaConfig, hidden_size=64)
self.model_tester = self.model_tester_class(self)
self.config_tester = ConfigTester(self, config_class=self.model_tester.config_class, hidden_size=64)
def test_config(self):
self.config_tester.run_common_tests()

View File

@ -0,0 +1,164 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch GraniteMoeHybrid model."""
import unittest
import pytest
from transformers import (
AutoTokenizer,
GraniteMoeHybridConfig,
is_torch_available,
)
from transformers.testing_utils import (
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...models.bamba.test_modeling_bamba import BambaModelTest, BambaModelTester
if is_torch_available():
import torch
from transformers import (
GraniteMoeHybridForCausalLM,
GraniteMoeHybridModel,
)
class GraniteMoeHybridModelTester(BambaModelTester):
config_class = GraniteMoeHybridConfig
if is_torch_available():
model_class = GraniteMoeHybridModel
for_causal_lm_class = GraniteMoeHybridForCausalLM
def __init__(
self,
parent,
use_cache=False,
shared_intermediate_size=174,
layer_types=None,
):
super().__init__(parent)
self.shared_intermediate_size = shared_intermediate_size
self.layer_types = layer_types
self.use_cache = use_cache
def _update_layer_configs(self):
super()._update_layer_configs()
# GraniteMoeHybrid uses layer_types instead of attn_layer_indices
self.layer_types = ["mamba"] * self.num_hidden_layers
for idx in self.attn_layer_indices:
self.layer_types[idx] = "attention"
def get_config(self):
return super().get_config(
shared_intermediate_size=self.shared_intermediate_size,
layer_types=self.layer_types,
)
@require_torch
class GraniteMoeHybridModelTest(BambaModelTest, GenerationTesterMixin, unittest.TestCase):
model_tester_class = GraniteMoeHybridModelTester
all_model_classes = (
(
GraniteMoeHybridModel,
GraniteMoeHybridForCausalLM,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": GraniteMoeHybridModel,
"text-generation": GraniteMoeHybridForCausalLM,
}
if is_torch_available()
else {}
)
def test_config_requires_mamba_or_attention_layers(self):
"""Ensure we can't create a config with disallowed layers."""
with pytest.raises(ValueError):
GraniteMoeHybridConfig(layer_types=["not allowed!"])
# TODO (@alex-jw-brooks) - update this once the model(s) are out
@unittest.skip(reason="GraniteMoeHybrid models are not yet released")
@require_torch_gpu
class GraniteMoeHybridIntegrationTest(unittest.TestCase):
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
# Depending on the hardware we get different logits / generations
cuda_compute_capability_major_version = None
@classmethod
def setUpClass(cls):
if is_torch_available() and torch.cuda.is_available():
# 8 is for A100 / A10 and 7 for T4
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
@slow
def test_model_logits(self):
input_ids = [31390, 631, 4162, 30, 322, 25342, 432, 1875, 43826, 10066, 688, 225]
model = GraniteMoeHybridForCausalLM.from_pretrained("ibm-granite/granite-4.0-tiny", device_map="auto")
with torch.no_grad():
out = model(torch.tensor([input_ids]).to(torch_device))
# fmt: off
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor([
[-2.9711, -2.2554, -1.0814, -1.6123, -0.8780, -1.0685, -0.6368, -1.9732, -3.3548, -2.6895, -2.3062, -2.6338]
])
torch.testing.assert_close(EXPECTED_MEAN.to(torch_device), out.logits.float().mean(-1), rtol=1e-2, atol=1e-2)
# slicing logits[0, 0, 0:15]
EXPECTED_SLICE = torch.tensor([
[4.0662, 5.9547, 3.5803, 3.1306, 4.3211, 3.8902, 4.6438, 8.5434, 7.5865, 5.1623, 5.2240, 9.2982, 5.9094, 6.8834, 5.7551],
])
# fmt: on
self.assertTrue(
torch.allclose(
EXPECTED_SLICE.to(torch_device),
out.logits[0, 0, :15].float(),
atol=1e-3,
rtol=1e-3,
)
)
@slow
def test_model_generation(self):
EXPECTED_TEXT_COMPLETION = (
"Simply put, the theory of relativity states that 1) time is relative, and 2) space is relative. The first"
)
prompt = "Simply put, the theory of relativity states that "
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-4.0-tiny")
model = GraniteMoeHybridForCausalLM.from_pretrained("ibm-granite/granite-4.0-tiny", device_map="auto")
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# greedy generation outputs
generated_ids = model.generate(**model_inputs, max_new_tokens=16, do_sample=False)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)

View File

@ -47,6 +47,7 @@ CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK = {
"LlamaConfig",
"GraniteConfig",
"GraniteMoeConfig",
"GraniteMoeHybridConfig",
"Qwen3MoeConfig",
"GraniteSpeechConfig",
}