* Trainer - deprecate tokenizer for processing_class
* Extend chage across Seq2Seq trainer and docs
* Add tests
* Update to FutureWarning and add deprecation version
* Pass datasets trust_remote_code
* Pass trust_remote_code in more tests
* Add trust_remote_dataset_code arg to some tests
* Revert "Temporarily pin datasets upper version to fix CI"
This reverts commit b7672826ca.
* Pass trust_remote_code in librispeech_asr_dummy docstrings
* Revert "Pin datasets<2.20.0 for examples"
This reverts commit 833fc17a3e.
* Pass trust_remote_code to all examples
* Revert "Add trust_remote_dataset_code arg to some tests" to research_projects
* Pass trust_remote_code to tests
* Pass trust_remote_code to docstrings
* Fix flax examples tests requirements
* Pass trust_remote_dataset_code arg to tests
* Replace trust_remote_dataset_code with trust_remote_code in one example
* Fix duplicate trust_remote_code
* Replace args.trust_remote_dataset_code with args.trust_remote_code
* Replace trust_remote_dataset_code with trust_remote_code in parser
* Replace trust_remote_dataset_code with trust_remote_code in dataclasses
* Replace trust_remote_dataset_code with trust_remote_code arg
* Remove deprecated logic and warnings
* Add back some code that seems to be important...
* Let's just add all he nllb stuff back; removing it is a bit more involved
* Remove kwargs
* Remove more kwargs
* add low_cpu_mem_usage option in run_clm.py example which will benefit LLM loading
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
* update all the example and README under language-modeling
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>