mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
Remove deprecated logic and warnings (#30743)
* Remove deprecated logic and warnings * Add back some code that seems to be important... * Let's just add all he nllb stuff back; removing it is a bit more involved * Remove kwargs * Remove more kwargs
This commit is contained in:
parent
3d7d3a87a0
commit
57c965a8f1
@ -22,7 +22,6 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
@ -192,12 +191,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -406,15 +399,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_image_captioning", model_args, data_args, framework="flax")
|
||||
|
@ -26,7 +26,6 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
@ -178,12 +177,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -470,15 +463,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_bart_dlm", model_args, data_args, framework="flax")
|
||||
|
@ -27,7 +27,6 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
@ -179,12 +178,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -351,15 +344,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clm", model_args, data_args, framework="flax")
|
||||
|
@ -26,7 +26,6 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from itertools import chain
|
||||
@ -184,12 +183,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -394,15 +387,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mlm", model_args, data_args, framework="flax")
|
||||
|
@ -25,7 +25,6 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
|
||||
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
|
||||
@ -178,12 +177,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -511,15 +504,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_t5_mlm", model_args, data_args, framework="flax")
|
||||
|
@ -25,7 +25,6 @@ import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
@ -165,12 +164,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -455,15 +448,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_qa", model_args, data_args, framework="flax")
|
||||
|
@ -24,7 +24,6 @@ import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
@ -198,12 +197,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -434,15 +427,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_summarization", model_args, data_args, framework="flax")
|
||||
|
@ -24,7 +24,6 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
@ -169,12 +168,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -274,15 +267,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_image_classification", model_args, data_args, framework="flax")
|
||||
|
@ -161,12 +161,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -214,15 +208,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_audio_classification", model_args, data_args)
|
||||
|
@ -26,7 +26,6 @@ Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask)
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -96,12 +95,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -252,15 +245,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clip", model_args, data_args)
|
||||
|
@ -16,7 +16,6 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -161,12 +160,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -196,15 +189,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_image_classification", model_args, data_args)
|
||||
|
@ -16,7 +16,6 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -143,12 +142,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
mask_ratio: float = field(
|
||||
default=0.75, metadata={"help": "The ratio of the number of masked tokens in the input sequence."}
|
||||
)
|
||||
@ -182,15 +175,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mae", model_args, data_args)
|
||||
|
@ -16,7 +16,6 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -163,12 +162,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -256,15 +249,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mim", model_args, data_args)
|
||||
|
@ -17,7 +17,6 @@ import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import datasets
|
||||
@ -196,12 +195,6 @@ def parse_args():
|
||||
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_auth_token",
|
||||
type=bool,
|
||||
default=None,
|
||||
help="The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--trust_remote_code",
|
||||
type=bool,
|
||||
@ -384,15 +377,6 @@ def collate_fn(examples):
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
if args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
args.token = args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mim_no_trainer", args)
|
||||
|
@ -25,7 +25,6 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from typing import Optional
|
||||
@ -121,12 +120,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -255,15 +248,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clm", model_args, data_args)
|
||||
|
@ -25,7 +25,6 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from typing import Optional
|
||||
@ -118,12 +117,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -266,15 +259,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mlm", model_args, data_args)
|
||||
|
@ -22,7 +22,6 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from typing import Optional
|
||||
@ -105,12 +104,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
low_cpu_mem_usage: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -236,15 +229,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_plm", model_args, data_args)
|
||||
|
@ -21,7 +21,6 @@ Fine-tuning the library models for multiple choice.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from typing import Optional, Union
|
||||
@ -89,12 +88,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -242,15 +235,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_swag", model_args, data_args)
|
||||
|
@ -89,12 +89,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -244,15 +238,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_qa", model_args, data_args)
|
||||
|
@ -21,7 +21,6 @@ Fine-tuning XLNet for question answering with beam search using a slightly adapt
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -88,12 +87,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -233,15 +226,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_qa_beam_search", model_args, data_args)
|
||||
|
@ -21,7 +21,6 @@ Fine-tuning the library's seq2seq models for question answering using the 🤗 S
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
@ -90,12 +89,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -290,15 +283,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_seq2seq_qa", model_args, data_args)
|
||||
|
@ -17,7 +17,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from functools import partial
|
||||
from typing import Optional
|
||||
@ -151,12 +150,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -182,15 +175,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_semantic_segmentation", model_args, data_args)
|
||||
|
@ -251,12 +251,6 @@ class DataTrainingArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -411,15 +405,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if data_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if data_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
data_args.token = data_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_speech_recognition_ctc", model_args, data_args)
|
||||
|
@ -241,12 +241,6 @@ class DataTrainingArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -391,15 +385,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if data_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if data_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
data_args.token = data_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_speech_recognition_ctc_adapter", model_args, data_args)
|
||||
|
@ -22,7 +22,6 @@ Fine-tuning the library models for sequence to sequence speech recognition.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
@ -95,12 +94,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -295,15 +288,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_speech_recognition_seq2seq", model_args, data_args)
|
||||
|
@ -21,7 +21,6 @@ Fine-tuning the library models for sequence to sequence.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -109,12 +108,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -329,15 +322,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_summarization", model_args, data_args)
|
||||
|
@ -20,7 +20,6 @@ import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
|
||||
@ -237,12 +236,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -285,15 +278,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_classification", model_args, data_args)
|
||||
|
@ -20,7 +20,6 @@ import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -198,12 +197,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -233,15 +226,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_glue", model_args, data_args)
|
||||
|
@ -21,7 +21,6 @@ import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -162,12 +161,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -192,15 +185,6 @@ def main():
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_xnli", model_args)
|
||||
|
@ -22,7 +22,6 @@ Fine-tuning the library models for token classification.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -89,12 +88,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -234,15 +227,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_ner", model_args, data_args)
|
||||
|
@ -21,7 +21,6 @@ Fine-tuning the library models for sequence to sequence.
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -99,12 +98,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -278,15 +271,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_translation", model_args, data_args)
|
||||
|
@ -26,7 +26,6 @@ Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask)
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -102,12 +101,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -262,15 +255,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
if model_args.model_name_or_path is not None:
|
||||
if model_args.vision_model_name_or_path is not None or model_args.text_model_name_or_path is not None:
|
||||
raise ValueError(
|
||||
|
@ -23,7 +23,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -168,12 +167,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -244,18 +237,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
if not (training_args.do_train or training_args.do_eval or training_args.do_predict):
|
||||
exit("Must specify at least one of --do_train, --do_eval or --do_predict!")
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/TensorFlow versions.
|
||||
send_example_telemetry("run_image_classification", model_args, data_args, framework="tensorflow")
|
||||
|
@ -30,7 +30,6 @@ import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
@ -122,12 +121,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -237,15 +230,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clm", model_args, data_args, framework="tensorflow")
|
||||
|
@ -28,7 +28,6 @@ import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
@ -120,12 +119,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -243,15 +236,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_mlm", model_args, data_args, framework="tensorflow")
|
||||
|
@ -22,7 +22,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
@ -156,12 +155,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -256,15 +249,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_swag", model_args, data_args, framework="tensorflow")
|
||||
|
@ -22,7 +22,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
@ -101,12 +100,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -276,15 +269,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_qa", model_args, data_args, framework="tensorflow")
|
||||
|
@ -22,7 +22,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -109,12 +108,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -304,15 +297,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_summarization", model_args, data_args, framework="tensorflow")
|
||||
|
@ -20,7 +20,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -174,12 +173,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -209,15 +202,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_glue", model_args, data_args, framework="tensorflow")
|
||||
|
@ -20,7 +20,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
@ -194,12 +193,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -229,15 +222,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_text_classification", model_args, data_args, framework="tensorflow")
|
||||
|
@ -21,7 +21,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -85,12 +84,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -213,15 +206,6 @@ def main():
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_ner", model_args, data_args, framework="tensorflow")
|
||||
|
@ -22,7 +22,6 @@ import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
@ -103,12 +102,6 @@ class ModelArguments:
|
||||
)
|
||||
},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
||||
},
|
||||
)
|
||||
trust_remote_code: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
@ -285,15 +278,6 @@ def main():
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.use_auth_token is not None:
|
||||
warnings.warn(
|
||||
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
if model_args.token is not None:
|
||||
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||
model_args.token = model_args.use_auth_token
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_translation", model_args, data_args, framework="tensorflow")
|
||||
|
@ -727,23 +727,11 @@ class ImageFeatureExtractionMixin:
|
||||
)
|
||||
|
||||
|
||||
def promote_annotation_format(annotation_format: Union[AnnotionFormat, AnnotationFormat]) -> AnnotationFormat:
|
||||
# can be removed when `AnnotionFormat` is fully deprecated
|
||||
return AnnotationFormat(annotation_format.value)
|
||||
|
||||
|
||||
def validate_annotations(
|
||||
annotation_format: AnnotationFormat,
|
||||
supported_annotation_formats: Tuple[AnnotationFormat, ...],
|
||||
annotations: List[Dict],
|
||||
) -> None:
|
||||
if isinstance(annotation_format, AnnotionFormat):
|
||||
logger.warning_once(
|
||||
f"`{annotation_format.__class__.__name__}` is deprecated and will be removed in v4.38. "
|
||||
f"Please use `{AnnotationFormat.__name__}` instead."
|
||||
)
|
||||
annotation_format = promote_annotation_format(annotation_format)
|
||||
|
||||
if annotation_format not in supported_annotation_formats:
|
||||
raise ValueError(f"Unsupported annotation format: {format} must be one of {supported_annotation_formats}")
|
||||
|
||||
|
@ -371,22 +371,10 @@ class AutoImageProcessor:
|
||||
if image_processor_class is None and image_processor_auto_map is None:
|
||||
feature_extractor_class = config_dict.pop("feature_extractor_type", None)
|
||||
if feature_extractor_class is not None:
|
||||
logger.warning(
|
||||
"Could not find image processor class in the image processor config or the model config. Loading "
|
||||
"based on pattern matching with the model's feature extractor configuration. Please open a "
|
||||
"PR/issue to update `preprocessor_config.json` to use `image_processor_type` instead of "
|
||||
"`feature_extractor_type`. This warning will be removed in v4.40."
|
||||
)
|
||||
image_processor_class = feature_extractor_class.replace("FeatureExtractor", "ImageProcessor")
|
||||
if "AutoFeatureExtractor" in config_dict.get("auto_map", {}):
|
||||
feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"]
|
||||
image_processor_auto_map = feature_extractor_auto_map.replace("FeatureExtractor", "ImageProcessor")
|
||||
logger.warning(
|
||||
"Could not find image processor auto map in the image processor config or the model config. "
|
||||
"Loading based on pattern matching with the model's feature extractor configuration. Please open a "
|
||||
"PR/issue to update `preprocessor_config.json` to use `AutoImageProcessor` instead of "
|
||||
"`AutoFeatureExtractor`. This warning will be removed in v4.40."
|
||||
)
|
||||
|
||||
# If we don't find the image processor class in the image processor config, let's try the model config.
|
||||
if image_processor_class is None and image_processor_auto_map is None:
|
||||
|
@ -23,7 +23,6 @@
|
||||
"""PyTorch Cohere model."""
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -635,7 +634,6 @@ class CohereDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""
|
||||
Args:
|
||||
@ -651,11 +649,6 @@ class CohereDecoderLayer(nn.Module):
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
"""
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
@ -669,7 +662,6 @@ class CohereDecoderLayer(nn.Module):
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
|
@ -915,31 +915,6 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Format {format} is not supported.")
|
||||
return target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
|
||||
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
||||
logger.warning_once(
|
||||
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
||||
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
||||
"does not return the image anymore.",
|
||||
)
|
||||
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
||||
return image, target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
|
||||
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
||||
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
||||
return convert_coco_poly_to_mask(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection with DETR->ConditionalDetr
|
||||
def prepare_coco_detection(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_detection_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
|
||||
def prepare_coco_panoptic(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
|
||||
def resize(
|
||||
self,
|
||||
|
@ -556,23 +556,7 @@ class DetrAttention(nn.Module):
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
|
||||
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs):
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]):
|
||||
return tensor if object_queries is None else tensor + object_queries
|
||||
|
||||
def forward(
|
||||
@ -583,38 +567,8 @@ class DetrAttention(nn.Module):
|
||||
key_value_states: Optional[torch.Tensor] = None,
|
||||
spatial_position_embeddings: Optional[torch.Tensor] = None,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
position_embeddings = kwargs.pop("position_ebmeddings", None)
|
||||
key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if key_value_position_embeddings is not None and spatial_position_embeddings is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
if key_value_position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead"
|
||||
)
|
||||
spatial_position_embeddings = key_value_position_embeddings
|
||||
|
||||
# if key_value_states are provided this layer is used as a cross-attention layer
|
||||
# for the decoder
|
||||
is_cross_attention = key_value_states is not None
|
||||
@ -838,7 +792,6 @@ class ConditionalDetrEncoderLayer(nn.Module):
|
||||
attention_mask: torch.Tensor,
|
||||
object_queries: torch.Tensor = None,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -852,22 +805,6 @@ class ConditionalDetrEncoderLayer(nn.Module):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states, attn_weights = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
@ -956,7 +893,6 @@ class ConditionalDetrDecoderLayer(nn.Module):
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
is_first: Optional[bool] = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -979,22 +915,6 @@ class ConditionalDetrDecoderLayer(nn.Module):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
# ========== Begin of Self-Attention =============
|
||||
@ -1236,7 +1156,6 @@ class ConditionalDetrEncoder(ConditionalDetrPreTrainedModel):
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
@ -1263,22 +1182,6 @@ class ConditionalDetrEncoder(ConditionalDetrPreTrainedModel):
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1377,7 +1280,6 @@ class ConditionalDetrDecoder(ConditionalDetrPreTrainedModel):
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
@ -1414,22 +1316,6 @@ class ConditionalDetrDecoder(ConditionalDetrPreTrainedModel):
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -913,31 +913,6 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Format {format} is not supported.")
|
||||
return target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
|
||||
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
||||
logger.warning_once(
|
||||
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
||||
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
||||
"does not return the image anymore.",
|
||||
)
|
||||
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
||||
return image, target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
|
||||
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
||||
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
||||
return convert_coco_poly_to_mask(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection
|
||||
def prepare_coco_detection(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_detection_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
|
||||
def prepare_coco_panoptic(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
|
||||
def resize(
|
||||
self,
|
||||
|
@ -576,31 +576,6 @@ class DetaImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Format {format} is not supported.")
|
||||
return target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
|
||||
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
||||
logger.warning_once(
|
||||
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
||||
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
||||
"does not return the image anymore.",
|
||||
)
|
||||
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
||||
return image, target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
|
||||
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
||||
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
||||
return convert_coco_poly_to_mask(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection
|
||||
def prepare_coco_detection(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_detection_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
|
||||
def prepare_coco_panoptic(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
||||
|
||||
def resize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
|
@ -896,27 +896,6 @@ class DetrImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Format {format} is not supported.")
|
||||
return target
|
||||
|
||||
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
||||
logger.warning_once(
|
||||
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
||||
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
||||
"does not return the image anymore.",
|
||||
)
|
||||
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
||||
return image, target
|
||||
|
||||
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
||||
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
||||
return convert_coco_poly_to_mask(*args, **kwargs)
|
||||
|
||||
def prepare_coco_detection(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_detection_annotation(*args, **kwargs)
|
||||
|
||||
def prepare_coco_panoptic(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
||||
|
||||
def resize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
|
@ -524,23 +524,7 @@ class DetrAttention(nn.Module):
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
|
||||
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs):
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]):
|
||||
return tensor if object_queries is None else tensor + object_queries
|
||||
|
||||
def forward(
|
||||
@ -551,38 +535,8 @@ class DetrAttention(nn.Module):
|
||||
key_value_states: Optional[torch.Tensor] = None,
|
||||
spatial_position_embeddings: Optional[torch.Tensor] = None,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
position_embeddings = kwargs.pop("position_ebmeddings", None)
|
||||
key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if key_value_position_embeddings is not None and spatial_position_embeddings is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
if key_value_position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead"
|
||||
)
|
||||
spatial_position_embeddings = key_value_position_embeddings
|
||||
|
||||
# if key_value_states are provided this layer is used as a cross-attention layer
|
||||
# for the decoder
|
||||
is_cross_attention = key_value_states is not None
|
||||
@ -688,7 +642,6 @@ class DetrEncoderLayer(nn.Module):
|
||||
attention_mask: torch.Tensor,
|
||||
object_queries: torch.Tensor = None,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -702,22 +655,6 @@ class DetrEncoderLayer(nn.Module):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states, attn_weights = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
@ -787,7 +724,6 @@ class DetrDecoderLayer(nn.Module):
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -810,22 +746,6 @@ class DetrDecoderLayer(nn.Module):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
# Self Attention
|
||||
@ -995,7 +915,6 @@ class DetrEncoder(DetrPreTrainedModel):
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
@ -1022,22 +941,6 @@ class DetrEncoder(DetrPreTrainedModel):
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
@ -1129,7 +1032,6 @@ class DetrDecoder(DetrPreTrainedModel):
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
@ -1167,22 +1069,6 @@ class DetrDecoder(DetrPreTrainedModel):
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -15,7 +15,6 @@
|
||||
"""PyTorch Falcon model."""
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -393,13 +392,7 @@ class FalconAttention(nn.Module):
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
||||
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
||||
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
||||
@ -549,16 +542,7 @@ class FalconFlashAttention2(FalconAttention):
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
# overwrite attention_mask with padding_mask
|
||||
attention_mask = kwargs.pop("padding_mask")
|
||||
|
||||
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
||||
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
||||
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
||||
@ -792,13 +776,7 @@ class FalconDecoderLayer(nn.Module):
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
if self.config.new_decoder_architecture and self.config.num_ln_in_parallel_attn == 2:
|
||||
@ -817,7 +795,6 @@ class FalconDecoderLayer(nn.Module):
|
||||
head_mask=head_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
attention_output = attn_outputs[0]
|
||||
|
@ -16,7 +16,6 @@
|
||||
""" PyTorch Gemma model."""
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -616,7 +615,6 @@ class GemmaDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""
|
||||
Args:
|
||||
@ -632,11 +630,6 @@ class GemmaDecoderLayer(nn.Module):
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
"""
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
@ -650,7 +643,6 @@ class GemmaDecoderLayer(nn.Module):
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
|
@ -920,31 +920,6 @@ class GroundingDinoImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Format {format} is not supported.")
|
||||
return target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
|
||||
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
||||
logger.warning_once(
|
||||
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
||||
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
||||
"does not return the image anymore.",
|
||||
)
|
||||
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
||||
return image, target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
|
||||
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
||||
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
||||
return convert_coco_poly_to_mask(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection
|
||||
def prepare_coco_detection(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_detection_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
|
||||
def prepare_coco_panoptic(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
|
||||
def resize(
|
||||
self,
|
||||
|
@ -20,7 +20,6 @@
|
||||
"""PyTorch LLaMA model."""
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -104,29 +103,6 @@ class LlamaRotaryEmbedding(nn.Module):
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
# For BC we register cos and sin cached
|
||||
self.max_seq_len_cached = max_position_embeddings
|
||||
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
||||
t = t / self.scaling_factor
|
||||
freqs = torch.outer(t, self.inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
||||
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
||||
|
||||
@property
|
||||
def sin_cached(self):
|
||||
logger.warning_once(
|
||||
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
||||
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
||||
)
|
||||
return self._sin_cached
|
||||
|
||||
@property
|
||||
def cos_cached(self):
|
||||
logger.warning_once(
|
||||
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
||||
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
||||
)
|
||||
return self._cos_cached
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, x, position_ids):
|
||||
@ -714,7 +690,6 @@ class LlamaDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""
|
||||
Args:
|
||||
@ -730,11 +705,6 @@ class LlamaDecoderLayer(nn.Module):
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
"""
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
@ -748,7 +718,6 @@ class LlamaDecoderLayer(nn.Module):
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
|
@ -440,23 +440,7 @@ class DetrAttention(nn.Module):
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
|
||||
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs):
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]):
|
||||
return tensor if object_queries is None else tensor + object_queries
|
||||
|
||||
def forward(
|
||||
@ -467,38 +451,8 @@ class DetrAttention(nn.Module):
|
||||
key_value_states: Optional[torch.Tensor] = None,
|
||||
spatial_position_embeddings: Optional[torch.Tensor] = None,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
position_embeddings = kwargs.pop("position_ebmeddings", None)
|
||||
key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if key_value_position_embeddings is not None and spatial_position_embeddings is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
if key_value_position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead"
|
||||
)
|
||||
spatial_position_embeddings = key_value_position_embeddings
|
||||
|
||||
# if key_value_states are provided this layer is used as a cross-attention layer
|
||||
# for the decoder
|
||||
is_cross_attention = key_value_states is not None
|
||||
@ -616,7 +570,6 @@ class DetrDecoderLayer(nn.Module):
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@ -639,22 +592,6 @@ class DetrDecoderLayer(nn.Module):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
# Self Attention
|
||||
@ -742,7 +679,6 @@ class DetrDecoder(nn.Module):
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
@ -779,21 +715,6 @@ class DetrDecoder(nn.Module):
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -20,7 +20,6 @@
|
||||
""" PyTorch Mistral model."""
|
||||
import inspect
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -246,12 +245,7 @@ class MistralAttention(nn.Module):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -344,15 +338,7 @@ class MistralFlashAttention2(MistralAttention):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
# overwrite attention_mask with padding_mask
|
||||
attention_mask = kwargs.pop("padding_mask")
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -729,12 +715,7 @@ class MistralDecoderLayer(nn.Module):
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
|
@ -20,7 +20,6 @@
|
||||
""" PyTorch Mixtral model."""
|
||||
import inspect
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -323,12 +322,7 @@ class MixtralAttention(nn.Module):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -422,15 +416,7 @@ class MixtralFlashAttention2(MixtralAttention):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
# overwrite attention_mask with padding_mask
|
||||
attention_mask = kwargs.pop("padding_mask")
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -805,14 +791,6 @@ class MixtralBlockSparseTop2MLP(nn.Module):
|
||||
return current_hidden_states
|
||||
|
||||
|
||||
class MixtralBLockSparseTop2MLP(MixtralBlockSparseTop2MLP):
|
||||
def __init__(self, *args, **kwargs):
|
||||
logger.warning_once(
|
||||
"MixtralBLockSparseTop2MLP is deprecated by MixtralBlockSparseTop2MLP and will be removed in v4.40."
|
||||
)
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
||||
class MixtralSparseMoeBlock(nn.Module):
|
||||
"""
|
||||
This implementation is
|
||||
@ -901,12 +879,7 @@ class MixtralDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
output_router_logits: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
|
@ -20,7 +20,6 @@
|
||||
"""PyTorch OLMo model."""
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -101,29 +100,6 @@ class OlmoRotaryEmbedding(nn.Module):
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
# For BC we register cos and sin cached
|
||||
self.max_seq_len_cached = max_position_embeddings
|
||||
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
||||
t = t / self.scaling_factor
|
||||
freqs = torch.outer(t, self.inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
||||
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
||||
|
||||
@property
|
||||
def sin_cached(self):
|
||||
logger.warning_once(
|
||||
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
||||
"the forward method of RoPE from now on instead. It is not used in the `OlmoAttention` class"
|
||||
)
|
||||
return self._sin_cached
|
||||
|
||||
@property
|
||||
def cos_cached(self):
|
||||
logger.warning_once(
|
||||
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
||||
"the forward method of RoPE from now on instead. It is not used in the `OlmoAttention` class"
|
||||
)
|
||||
return self._cos_cached
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, x, position_ids):
|
||||
@ -690,7 +666,6 @@ class OlmoDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""
|
||||
Args:
|
||||
@ -706,11 +681,6 @@ class OlmoDecoderLayer(nn.Module):
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
"""
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
@ -724,7 +694,6 @@ class OlmoDecoderLayer(nn.Module):
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
|
@ -14,7 +14,6 @@
|
||||
# limitations under the License.
|
||||
""" PyTorch OWLv2 model."""
|
||||
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
@ -1197,16 +1196,7 @@ class Owlv2Model(Owlv2PreTrainedModel):
|
||||
if return_loss:
|
||||
loss = owlv2_loss(logits_per_text)
|
||||
|
||||
if return_base_image_embeds:
|
||||
warnings.warn(
|
||||
"`return_base_image_embeds` is deprecated and will be removed in v4.27 of Transformers, one can"
|
||||
" obtain the base (unprojected) image embeddings from outputs.vision_model_output.",
|
||||
FutureWarning,
|
||||
)
|
||||
last_hidden_state = vision_outputs[0]
|
||||
image_embeds = self.vision_model.post_layernorm(last_hidden_state)
|
||||
else:
|
||||
text_embeds = text_embeds_norm
|
||||
text_embeds = text_embeds_norm
|
||||
|
||||
if not return_dict:
|
||||
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
||||
|
@ -14,7 +14,6 @@
|
||||
# limitations under the License.
|
||||
""" PyTorch OWL-ViT model."""
|
||||
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
@ -1180,16 +1179,7 @@ class OwlViTModel(OwlViTPreTrainedModel):
|
||||
if return_loss:
|
||||
loss = owlvit_loss(logits_per_text)
|
||||
|
||||
if return_base_image_embeds:
|
||||
warnings.warn(
|
||||
"`return_base_image_embeds` is deprecated and will be removed in v4.27 of Transformers, one can"
|
||||
" obtain the base (unprojected) image embeddings from outputs.vision_model_output.",
|
||||
FutureWarning,
|
||||
)
|
||||
last_hidden_state = vision_outputs[0]
|
||||
image_embeds = self.vision_model.post_layernorm(last_hidden_state)
|
||||
else:
|
||||
text_embeds = text_embeds_norm
|
||||
text_embeds = text_embeds_norm
|
||||
|
||||
if not return_dict:
|
||||
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
||||
|
@ -17,7 +17,6 @@
|
||||
|
||||
import inspect
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -430,7 +429,6 @@ class Phi3FlashAttention2(Phi3Attention):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
# Phi3FlashAttention2 attention does not support output_attentions
|
||||
|
||||
@ -442,14 +440,6 @@ class Phi3FlashAttention2(Phi3Attention):
|
||||
|
||||
output_attentions = False
|
||||
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
# overwrite attention_mask with padding_mask
|
||||
attention_mask = kwargs.pop("padding_mask")
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
qkv = self.qkv_proj(hidden_states)
|
||||
@ -835,12 +825,7 @@ class Phi3DecoderLayer(nn.Module):
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`):
|
||||
|
@ -20,7 +20,6 @@
|
||||
""" PyTorch Qwen2 model."""
|
||||
import inspect
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -244,12 +243,7 @@ class Qwen2Attention(nn.Module):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -344,15 +338,7 @@ class Qwen2FlashAttention2(Qwen2Attention):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
# overwrite attention_mask with padding_mask
|
||||
attention_mask = kwargs.pop("padding_mask")
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -739,13 +725,7 @@ class Qwen2DecoderLayer(nn.Module):
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||
"Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
|
@ -21,7 +21,6 @@
|
||||
|
||||
import inspect
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -321,12 +320,7 @@ class Qwen2MoeAttention(nn.Module):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -422,15 +416,7 @@ class Qwen2MoeFlashAttention2(Qwen2MoeAttention):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
# overwrite attention_mask with padding_mask
|
||||
attention_mask = kwargs.pop("padding_mask")
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -881,13 +867,7 @@ class Qwen2MoeDecoderLayer(nn.Module):
|
||||
output_attentions: Optional[bool] = False,
|
||||
output_router_logits: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||
"Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
|
@ -279,11 +279,6 @@ class SEWDConfig(PretrainedConfig):
|
||||
def inputs_to_logits_ratio(self):
|
||||
return functools.reduce(operator.mul, self.conv_stride, 1)
|
||||
|
||||
@property
|
||||
def hidden_dropout(self):
|
||||
logger.warning_once("hidden_dropout is not used by the model and will be removed as config attribute in v4.35")
|
||||
return self._hidden_dropout
|
||||
|
||||
def to_dict(self):
|
||||
"""
|
||||
Serializes this instance to a Python dictionary.
|
||||
|
@ -20,7 +20,6 @@
|
||||
""" PyTorch Starcoder2 model."""
|
||||
import inspect
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
@ -227,12 +226,7 @@ class Starcoder2Attention(nn.Module):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -328,15 +322,7 @@ class Starcoder2FlashAttention2(Starcoder2Attention):
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
# overwrite attention_mask with padding_mask
|
||||
attention_mask = kwargs.pop("padding_mask")
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
@ -717,12 +703,7 @@ class Starcoder2DecoderLayer(nn.Module):
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
|
@ -461,23 +461,7 @@ class TableTransformerAttention(nn.Module):
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
|
||||
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs):
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]):
|
||||
return tensor if object_queries is None else tensor + object_queries
|
||||
|
||||
def forward(
|
||||
@ -488,38 +472,8 @@ class TableTransformerAttention(nn.Module):
|
||||
key_value_states: Optional[torch.Tensor] = None,
|
||||
spatial_position_embeddings: Optional[torch.Tensor] = None,
|
||||
output_attentions: bool = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
position_embeddings = kwargs.pop("position_ebmeddings", None)
|
||||
key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if key_value_position_embeddings is not None and spatial_position_embeddings is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
if key_value_position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead"
|
||||
)
|
||||
spatial_position_embeddings = key_value_position_embeddings
|
||||
|
||||
# if key_value_states are provided this layer is used as a cross-attention layer
|
||||
# for the decoder
|
||||
is_cross_attention = key_value_states is not None
|
||||
@ -1020,7 +974,6 @@ class TableTransformerDecoder(TableTransformerPreTrainedModel):
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
@ -1058,22 +1011,6 @@ class TableTransformerDecoder(TableTransformerPreTrainedModel):
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
position_embeddings = kwargs.pop("position_embeddings", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError(f"Unexpected arguments {kwargs.keys()}")
|
||||
|
||||
if position_embeddings is not None and object_queries is not None:
|
||||
raise ValueError(
|
||||
"Cannot specify both position_embeddings and object_queries. Please use just object_queries"
|
||||
)
|
||||
|
||||
if position_embeddings is not None:
|
||||
logger.warning_once(
|
||||
"position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
|
||||
)
|
||||
object_queries = position_embeddings
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
|
@ -820,31 +820,6 @@ class YolosImageProcessor(BaseImageProcessor):
|
||||
raise ValueError(f"Format {format} is not supported.")
|
||||
return target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
|
||||
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
||||
logger.warning_once(
|
||||
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
||||
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
||||
"does not return the image anymore.",
|
||||
)
|
||||
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
||||
return image, target
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
|
||||
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
||||
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
||||
return convert_coco_poly_to_mask(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection with DETR->Yolos
|
||||
def prepare_coco_detection(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_detection_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
|
||||
def prepare_coco_panoptic(self, *args, **kwargs):
|
||||
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
||||
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
||||
|
||||
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
|
||||
def resize(
|
||||
self,
|
||||
|
Loading…
Reference in New Issue
Block a user