* First draft
* Make conversion script work
* Add id2label mapping, run code quality
* Fix copies
* Add first draft of feature extractor
* Update conversion script to use feature extractor
* Make more tests pass
* Add docs
* update input_features to input_values + pad by default to max length
* Fix doc tests
* Add feature extractor tests
* Add proper padding/truncation to feature extractor
* Add support for conversion of all audioset checkpoints
* Improve docs and extend conversion script
* Fix README
* Rename spectogram to spectrogram
* Fix copies
* Add integration test
* Remove dummy conv
* Update to ast
* Update organization
* Fix init
* Rename model to AST
* Add require_torchaudio annotator
* Move import of ASTFeatureExtractor under a is_speech_available
* Fix rebase
* Add pipeline config
* Update name of classifier head
* Rename time_dimension and frequency_dimension for clarity
* Remove print statement
* Fix pipeline test
* Fix pipeline test
* Fix index table
* Fix init
* Fix conversion script
* Rename to ForAudioClassification
* Fix index table
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Update Special Language Tokens for PLBART
* fix format
* making mapping for language codes and updating tests:
* fix format
* fix consistency
* add assert to both tokenizer tests.
* fix format
* Update src/transformers/models/plbart/tokenization_plbart.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* improvin readability, setting self.tgt_lang
* fixing
* readability
Co-authored-by: jordiclive <jordiclive19@imperial.ac.uk>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add model files etc for MobileNetV2
rename files for MobileNetV1
initial implementation of MobileNetV1
fix conversion script
cleanup
write docs
tweaks
fix conversion script
extract hidden states
fix test cases
make fixup
fixup it all
remove main from doc link
fixes
fix tests
fix up
use google org
fix weird assert
* fixup
* use google organization for checkpoints
* Add LayerScale to NAT/DiNAT.
Completely dropped the ball on LayerScale in the original PR (#20219).
This is just an optional argument in both models, and is only activated for larger variants in order to provide training stability.
* Add LayerScale to NAT/DiNAT.
Minor error fixed.
Co-authored-by: Ali Hassani <ahassanijr@gmail.com>
* Update _toctree and clone original content
* Translate first three sections
* Add more translated chapters. Only 3 more left.
* Finish translation
* Run style from doc-builder
* Address recommended changes from reviewer
* Add DiNAT
* Adds DiNAT + tests
* Minor fixes
* Added HF model
* Add natten to dependencies.
* Cleanup
* Minor fixup
* Reformat
* Optional NATTEN import.
* Reformat & add doc to _toctree
* Reformat (finally)
* Dummy objects for DiNAT
* Add NAT + minor changes
Adds NAT as its own independent model + docs, tests
Adds NATTEN to ext deps to ensure ci picks it up.
* Remove natten from `all` and `dev-torch` deps, add manual pip install to ci tests
* Minor fixes.
* Fix READMEs.
* Requested changes to docs + minor fixes.
* Requested changes.
* Add NAT/DiNAT tests to layoutlm_job
* Correction to Dinat doc.
* Requested changes.
* [Proposal] Breaking change `zero-shot-object-detection` for improved
consistency.
This is a proposal to modify the output of `zero-shot-object-detection`
to provide better alignment with other pipelines.
The output is now strictly the same as `object-detection` whereas before
it would output lists of lists.
The name `candidate_labels` is used throughout for consistency with
other `zero-shot` pipelines.
The pipeline is changed to `ChunkPipeline` to support batching cleanly.
This removes all the lists and list of lists shenanigans, it's now a
matter of the base pipeline handling all this not this specific one.
**Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2],
text_queries=[candidates1, candidates2])` to support only
`pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])`
when dealing with lists and/or datasets.
We could keep them, but it will add a lot of complexity to the code
base, since the pipeline is rather young, I'd rather break to keep the
code simpler, but we can revert this.
**Breaking change**: The name of the argument is now `image` instead of
`images` since it expects by default only 1 image. This is revertable
like the previous one.
**Breaking change**: The types is now simplified and flattened:
`pipe(inputs) == [{**object1}, {**object2}]`
instead of the previous
`pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]`
Where the different instances would be grouped by candidate labels
within lists.
IMHO this is not really desirable, since it would output empty lists and
is only adding superflous indirection compared to
`zero-shot-object-detection`.
It is relatively change free in terms of how the results, it does change
computation however since now the batching is handled by the pipeline
itself. It **did** change the results for the small models so there
seems to be a real difference in how the models handle this.
* Fixing the doctests.
* Behind is_torch_available.
* Add ResNetBackbone
* Define channels and strides as property
* Remove file
* Add test for backbone
* Update BackboneOutput class
* Remove strides property
* Fix docstring
* Add backbones to SHOULD_HAVE_THEIR_OWN_PAGE
* Fix auto mapping name
* Add sanity check for out_features
* Set stage names based on depths
* Update to tuple
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>