Fixing the doctests failures. (#20294)

* Fixing the doctests failures.

* Fixup.
This commit is contained in:
Nicolas Patry 2022-11-17 15:13:32 +01:00 committed by GitHub
parent 0f78529f98
commit 07b8f249cd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 10 additions and 8 deletions

View File

@ -590,15 +590,17 @@ def pipeline(
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
>>> # Sentiment analysis pipeline
>>> pipeline("sentiment-analysis")
>>> analyzer = pipeline("sentiment-analysis")
>>> # Question answering pipeline, specifying the checkpoint identifier
>>> pipeline("question-answering", model="distilbert-base-cased-distilled-squad", tokenizer="bert-base-cased")
>>> oracle = pipeline(
... "question-answering", model="distilbert-base-cased-distilled-squad", tokenizer="bert-base-cased"
... )
>>> # Named entity recognition pipeline, passing in a specific model and tokenizer
>>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> pipeline("ner", model=model, tokenizer=tokenizer)
>>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer)
```"""
if model_kwargs is None:
model_kwargs = {}

View File

@ -112,12 +112,11 @@ class DocumentQuestionAnsweringPipeline(ChunkPipeline):
>>> from transformers import pipeline
>>> document_qa = pipeline(model="impira/layoutlm-document-qa")
>>> result = document_qa(
>>> document_qa(
... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png",
... question="What is the invoice number?",
... )
>>> result[0]["answer"]
'1110212019'
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}]
```
[Learn more about the basics of using a pipeline in the [pipeline tutorial]](../pipeline_tutorial)

View File

@ -95,7 +95,8 @@ class TokenClassificationPipeline(Pipeline):
>>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple")
>>> sentence = "Je m'appelle jean-baptiste et je vis à montréal"
>>> token_classifier(sentence)
>>> tokens = token_classifier(sentence)
>>> tokens
[{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}]
>>> token = tokens[0]

View File

@ -61,7 +61,7 @@ class ZeroShotClassificationPipeline(ChunkPipeline):
>>> from transformers import pipeline
>>> oracle = pipeline(model="facebook/bart-large-mnli")
>>> answers = oracle(
>>> oracle(
... "I have a problem with my iphone that needs to be resolved asap!!",
... candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"],
... )