mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Fixing the doctests failures. (#20294)
* Fixing the doctests failures. * Fixup.
This commit is contained in:
parent
0f78529f98
commit
07b8f249cd
@ -590,15 +590,17 @@ def pipeline(
|
||||
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
||||
|
||||
>>> # Sentiment analysis pipeline
|
||||
>>> pipeline("sentiment-analysis")
|
||||
>>> analyzer = pipeline("sentiment-analysis")
|
||||
|
||||
>>> # Question answering pipeline, specifying the checkpoint identifier
|
||||
>>> pipeline("question-answering", model="distilbert-base-cased-distilled-squad", tokenizer="bert-base-cased")
|
||||
>>> oracle = pipeline(
|
||||
... "question-answering", model="distilbert-base-cased-distilled-squad", tokenizer="bert-base-cased"
|
||||
... )
|
||||
|
||||
>>> # Named entity recognition pipeline, passing in a specific model and tokenizer
|
||||
>>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
||||
>>> pipeline("ner", model=model, tokenizer=tokenizer)
|
||||
>>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer)
|
||||
```"""
|
||||
if model_kwargs is None:
|
||||
model_kwargs = {}
|
||||
|
@ -112,12 +112,11 @@ class DocumentQuestionAnsweringPipeline(ChunkPipeline):
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> document_qa = pipeline(model="impira/layoutlm-document-qa")
|
||||
>>> result = document_qa(
|
||||
>>> document_qa(
|
||||
... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png",
|
||||
... question="What is the invoice number?",
|
||||
... )
|
||||
>>> result[0]["answer"]
|
||||
'1110212019'
|
||||
[{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}]
|
||||
```
|
||||
|
||||
[Learn more about the basics of using a pipeline in the [pipeline tutorial]](../pipeline_tutorial)
|
||||
|
@ -95,7 +95,8 @@ class TokenClassificationPipeline(Pipeline):
|
||||
|
||||
>>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple")
|
||||
>>> sentence = "Je m'appelle jean-baptiste et je vis à montréal"
|
||||
>>> token_classifier(sentence)
|
||||
>>> tokens = token_classifier(sentence)
|
||||
>>> tokens
|
||||
[{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}]
|
||||
|
||||
>>> token = tokens[0]
|
||||
|
@ -61,7 +61,7 @@ class ZeroShotClassificationPipeline(ChunkPipeline):
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> oracle = pipeline(model="facebook/bart-large-mnli")
|
||||
>>> answers = oracle(
|
||||
>>> oracle(
|
||||
... "I have a problem with my iphone that needs to be resolved asap!!",
|
||||
... candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"],
|
||||
... )
|
||||
|
Loading…
Reference in New Issue
Block a user