mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
Generate: add generation config class (#20218)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
This commit is contained in:
parent
8503cc7550
commit
3de07473da
@ -18,6 +18,14 @@ Each framework has a generate method for auto-regressive text generation impleme
|
||||
- TensorFlow [`~generation.TFGenerationMixin.generate`] is implemented in [`~generation.TFGenerationMixin`].
|
||||
- Flax/JAX [`~generation.FlaxGenerationMixin.generate`] is implemented in [`~generation.FlaxGenerationMixin`].
|
||||
|
||||
<!--- TODO: add a brief description of GenerationConfig (with examples) when it becomes usable with generate --->
|
||||
|
||||
## GenerationConfig
|
||||
|
||||
[[autodoc]] generation.GenerationConfig
|
||||
- from_pretrained
|
||||
- save_pretrained
|
||||
|
||||
## GenerationMixin
|
||||
|
||||
[[autodoc]] generation.GenerationMixin
|
||||
|
@ -96,7 +96,7 @@ _import_structure = {
|
||||
"feature_extraction_sequence_utils": ["SequenceFeatureExtractor"],
|
||||
"feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"],
|
||||
"file_utils": [],
|
||||
"generation": [],
|
||||
"generation": ["GenerationConfig"],
|
||||
"hf_argparser": ["HfArgumentParser"],
|
||||
"integrations": [
|
||||
"is_clearml_available",
|
||||
@ -3258,6 +3258,9 @@ if TYPE_CHECKING:
|
||||
|
||||
# Feature Extractor
|
||||
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
|
||||
|
||||
# Generation
|
||||
from .generation import GenerationConfig
|
||||
from .hf_argparser import HfArgumentParser
|
||||
|
||||
# Integrations
|
||||
|
@ -21,7 +21,7 @@ from typing import TYPE_CHECKING
|
||||
from ..utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available
|
||||
|
||||
|
||||
_import_structure = {}
|
||||
_import_structure = {"configuration_utils": ["GenerationConfig"]}
|
||||
|
||||
|
||||
try:
|
||||
@ -149,6 +149,8 @@ else:
|
||||
]
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_utils import GenerationConfig
|
||||
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
570
src/transformers/generation/configuration_utils.py
Normal file
570
src/transformers/generation/configuration_utils.py
Normal file
@ -0,0 +1,570 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Generation configuration class and utilities."""
|
||||
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
from .. import __version__
|
||||
from ..utils import (
|
||||
GENERATION_CONFIG_NAME,
|
||||
PushToHubMixin,
|
||||
cached_file,
|
||||
download_url,
|
||||
extract_commit_hash,
|
||||
is_remote_url,
|
||||
logging,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class GenerationConfig(PushToHubMixin):
|
||||
r"""
|
||||
Class that holds a configuration for a generation task.
|
||||
|
||||
<Tip>
|
||||
|
||||
A generation configuration file can be loaded and saved to disk. Loading and using a generation configuration file
|
||||
does **not** change a model configuration or weights. It only affects the model's behavior at generation time.
|
||||
|
||||
</Tip>
|
||||
|
||||
Arg:
|
||||
> Parameters that control the length of the output
|
||||
|
||||
max_length (`int`, *optional*, defaults to 20):
|
||||
The maximum length the generated tokens can have. Corresponds to the length of the input prompt +
|
||||
`max_new_tokens`. In general, prefer the use of `max_new_tokens`, which ignores the number of tokens in the
|
||||
prompt.
|
||||
max_new_tokens (`int`, *optional*):
|
||||
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
|
||||
min_length (`int`, *optional*, defaults to 0):
|
||||
The minimum length of the sequence to be generated.
|
||||
early_stopping (`bool`, *optional*, defaults to `False`):
|
||||
Whether to stop the beam search when at least `num_beams` sentences are finished per batch or not.
|
||||
max_time(`float`, *optional*):
|
||||
The maximum amount of time you allow the computation to run for in seconds. generation will still finish
|
||||
the current pass after allocated time has been passed.
|
||||
|
||||
> Parameters that control the generation strategy used
|
||||
|
||||
do_sample (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to use sampling ; use greedy decoding otherwise.
|
||||
num_beams (`int`, *optional*, defaults to 1):
|
||||
Number of beams for beam search. 1 means no beam search.
|
||||
num_beam_groups (`int`, *optional*, defaults to 1):
|
||||
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
|
||||
[this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
|
||||
penalty_alpha (`float`, *optional*):
|
||||
The values balance the model confidence and the degeneration penalty in contrastive search decoding.
|
||||
|
||||
> Parameters for manipulation of the model output logits
|
||||
|
||||
temperature (`float`, *optional*, defaults to 1.0):
|
||||
The value used to module the next token probabilities.
|
||||
top_k (`int`, *optional*, defaults to 50):
|
||||
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
||||
top_p (`float`, *optional*, defaults to 1.0):
|
||||
If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to
|
||||
`top_p` or higher are kept for generation.
|
||||
typical_p (`float`, *optional*, defaults to 1.0):
|
||||
The amount of probability mass from the original distribution to be considered in typical decoding. If set
|
||||
to 1.0 it takes no effect. See [this paper](https://arxiv.org/pdf/2202.00666.pdf) for more details.
|
||||
diversity_penalty (`float`, *optional*, defaults to 0.0):
|
||||
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
|
||||
particular time. Note that `diversity_penalty` is only effective if `group beam search` is enabled.
|
||||
repetition_penalty (`float`, *optional*, defaults to 1.0):
|
||||
The parameter for repetition penalty. 1.0 means no penalty. See [this
|
||||
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
|
||||
length_penalty (`float`, *optional*, defaults to 1.0):
|
||||
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
||||
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
||||
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
||||
`length_penalty` < 0.0 encourages shorter sequences.
|
||||
no_repeat_ngram_size (`int`, *optional*, defaults to 0):
|
||||
If set to int > 0, all ngrams of that size can only occur once.
|
||||
bad_words_ids(`List[List[int]]`, *optional*):
|
||||
List of token ids that are not allowed to be generated. In order to get the token ids of the words that
|
||||
should not appear in the generated text, use `tokenizer(bad_words, add_prefix_space=True,
|
||||
add_special_tokens=False).input_ids`.
|
||||
force_words_ids(`List[List[int]]` or `List[List[List[int]]]`, *optional*):
|
||||
List of token ids that must be generated. If given a `List[List[int]]`, this is treated as a simple list of
|
||||
words that must be included, the opposite to `bad_words_ids`. If given `List[List[List[int]]]`, this
|
||||
triggers a [disjunctive constraint](https://github.com/huggingface/transformers/issues/14081), where one
|
||||
can allow different forms of each word.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
|
||||
speed up decoding.
|
||||
renormalize_logits (`bool`, *optional*, defaults to `False`):
|
||||
Whether to renormalize the logits after applying all the logits processors or warpers (including the custom
|
||||
ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits
|
||||
are normalized but some logit processors or warpers break the normalization.
|
||||
forced_bos_token_id (`int`, *optional*, defaults to `model.config.forced_bos_token_id`):
|
||||
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for
|
||||
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target
|
||||
language token.
|
||||
forced_eos_token_id (`int`, *optional*, defaults to `model.config.forced_eos_token_id`):
|
||||
The id of the token to force as the last generated token when `max_length` is reached.
|
||||
remove_invalid_values (`bool`, *optional*, defaults to `model.config.remove_invalid_values`):
|
||||
Whether to remove possible *nan* and *inf* outputs of the model to prevent the generation method to crash.
|
||||
Note that using `remove_invalid_values` can slow down generation.
|
||||
exponential_decay_length_penalty (`tuple(int, float)`, *optional*):
|
||||
This Tuple adds an exponentially increasing length penalty, after a certain amount of tokens have been
|
||||
generated. The tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where
|
||||
penalty starts and `decay_factor` represents the factor of exponential decay
|
||||
suppress_tokens (`List[int]`, *optional*):
|
||||
A list of tokens that will be supressed at generation. The `SupressTokens` logit processor will set their
|
||||
log probs to `-inf` so that they are not sampled.
|
||||
begin_suppress_tokens (`List[int]`, *optional*):
|
||||
A list of tokens that will be supressed at the begining of the generation. The `SupressBeginTokens` logit
|
||||
processor will set their log probs to `-inf` so that they are not sampled.
|
||||
forced_decoder_ids (`List[List[int]]`, *optional*):
|
||||
A list of pairs of integers which indicates a mapping from generation indices to token indices that will be
|
||||
forced before sampling. For example, `[[1, 123]]` means the second generated token will always be a token
|
||||
of index 123.
|
||||
|
||||
> Parameters that define the output variables of `generate`
|
||||
|
||||
num_return_sequences(`int`, *optional*, defaults to 1):
|
||||
The number of independently computed returned sequences for each element in the batch.
|
||||
output_attentions (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more details.
|
||||
output_hidden_states (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more details.
|
||||
output_scores (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
|
||||
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
|
||||
> Special tokens that can be used at generation time
|
||||
|
||||
pad_token_id (`int`, *optional*):
|
||||
The id of the *padding* token.
|
||||
bos_token_id (`int`, *optional*):
|
||||
The id of the *beginning-of-sequence* token.
|
||||
eos_token_id (`int`, *optional*):
|
||||
The id of the *end-of-sequence* token.
|
||||
|
||||
> Generation parameters exclusive to encoder-decoder models
|
||||
|
||||
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0):
|
||||
If set to int > 0, all ngrams of that size that occur in the `encoder_input_ids` cannot occur in the
|
||||
`decoder_input_ids`.
|
||||
decoder_start_token_id (`int`, *optional*):
|
||||
If an encoder-decoder model starts decoding with a different token than *bos*, the id of that token.
|
||||
|
||||
> Wild card
|
||||
|
||||
generation_kwargs:
|
||||
Additional generation kwargs will be forwarded to the `generate` function of the model. Kwargs that are not
|
||||
present in `generate`'s signature will be used in the model forward pass.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
# Parameters that control the length of the output
|
||||
self.max_length = kwargs.pop("max_length", 20)
|
||||
self.max_new_tokens = kwargs.pop("max_new_tokens", None)
|
||||
self.min_length = kwargs.pop("min_length", 0)
|
||||
self.early_stopping = kwargs.pop("early_stopping", False)
|
||||
self.max_time = kwargs.pop("max_time", None)
|
||||
|
||||
# Parameters that control the generation strategy used
|
||||
self.do_sample = kwargs.pop("do_sample", False)
|
||||
self.num_beams = kwargs.pop("num_beams", 1)
|
||||
self.num_beam_groups = kwargs.pop("num_beam_groups", 1)
|
||||
self.penalty_alpha = kwargs.pop("penalty_alpha", None)
|
||||
|
||||
# Parameters for manipulation of the model output logits
|
||||
self.temperature = kwargs.pop("temperature", 1.0)
|
||||
self.top_k = kwargs.pop("top_k", 50)
|
||||
self.top_p = kwargs.pop("top_p", 1.0)
|
||||
self.typical_p = kwargs.pop("typical_p", 1.0)
|
||||
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0)
|
||||
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
|
||||
self.length_penalty = kwargs.pop("length_penalty", 1.0)
|
||||
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
|
||||
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
|
||||
self.force_word_ids = kwargs.pop("force_word_ids", None)
|
||||
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
|
||||
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)
|
||||
self.remove_invalid_values = kwargs.pop("remove_invalid_values", False)
|
||||
self.exponential_decay_length_penalty = kwargs.pop("exponential_decay_length_penalty", None)
|
||||
self.suppress_tokens = kwargs.pop("suppress_tokens", None)
|
||||
self.begin_suppress_tokens = kwargs.pop("begin_suppress_tokens", None)
|
||||
self.forced_decoder_ids = kwargs.pop("forced_decoder_ids", None)
|
||||
|
||||
# Parameters that define the output variables of `generate`
|
||||
self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
|
||||
self.output_attentions = kwargs.pop("output_attentions", False)
|
||||
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
||||
self.output_scores = kwargs.pop("output_scores", False)
|
||||
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False)
|
||||
|
||||
# Special tokens that can be used at generation time
|
||||
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
||||
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
||||
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
||||
|
||||
# Generation parameters exclusive to encoder-decoder models
|
||||
self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0)
|
||||
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
|
||||
|
||||
# Wild card
|
||||
self.generation_kwargs = kwargs.pop("generation_kwargs", {})
|
||||
|
||||
# The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the the hub interface.
|
||||
self._commit_hash = kwargs.pop("_commit_hash", None)
|
||||
self.transformers_version = kwargs.pop("transformers_version", __version__)
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.__dict__ == other.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return f"{self.__class__.__name__} {self.to_json_string()}"
|
||||
|
||||
def save_pretrained(
|
||||
self,
|
||||
save_directory: Union[str, os.PathLike],
|
||||
config_file_name: Optional[Union[str, os.PathLike]] = None,
|
||||
push_to_hub: bool = False,
|
||||
**kwargs
|
||||
):
|
||||
r"""
|
||||
Save a generation configuration object to the directory `save_directory`, so that it can be re-loaded using the
|
||||
[`~GenerationConfig.from_pretrained`] class method.
|
||||
|
||||
Args:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory where the configuration JSON file will be saved (will be created if it does not exist).
|
||||
config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"generation_config.json"`):
|
||||
Name of the generation configuration JSON file to be saved in `save_directory`.
|
||||
push_to_hub (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
||||
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
||||
namespace).
|
||||
kwargs:
|
||||
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
||||
"""
|
||||
config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME
|
||||
|
||||
if os.path.isfile(save_directory):
|
||||
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
||||
|
||||
os.makedirs(save_directory, exist_ok=True)
|
||||
|
||||
if push_to_hub:
|
||||
commit_message = kwargs.pop("commit_message", None)
|
||||
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
||||
repo_id, token = self._create_repo(repo_id, **kwargs)
|
||||
files_timestamps = self._get_files_timestamps(save_directory)
|
||||
|
||||
output_config_file = os.path.join(save_directory, config_file_name)
|
||||
|
||||
self.to_json_file(output_config_file, use_diff=True)
|
||||
logger.info(f"Configuration saved in {output_config_file}")
|
||||
|
||||
if push_to_hub:
|
||||
self._upload_modified_files(
|
||||
save_directory, repo_id, files_timestamps, commit_message=commit_message, token=token
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
pretrained_model_name: Union[str, os.PathLike],
|
||||
config_file_name: Optional[Union[str, os.PathLike]] = None,
|
||||
**kwargs
|
||||
) -> "GenerationConfig":
|
||||
r"""
|
||||
Instantiate a [`GenerationConfig`] from a generation configuration file.
|
||||
|
||||
Args:
|
||||
pretrained_model_name (`str` or `os.PathLike`):
|
||||
This can be either:
|
||||
|
||||
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
||||
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
|
||||
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
|
||||
- a path to a *directory* containing a configuration file saved using the
|
||||
[`~GenerationConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
|
||||
config_file_name (`str` or `os.PathLike`, *optional*, defaults to `"generation_config.json"`):
|
||||
Name of the generation configuration JSON file to be loaded from `pretrained_model_name`.
|
||||
cache_dir (`str` or `os.PathLike`, *optional*):
|
||||
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
||||
standard cache should not be used.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force to (re-)download the configuration files and override the cached versions if
|
||||
they exist.
|
||||
resume_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
||||
exists.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
||||
use_auth_token (`str` or `bool`, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
||||
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||||
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||||
identifier allowed by git.
|
||||
|
||||
<Tip>
|
||||
|
||||
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
||||
|
||||
</Tip>
|
||||
|
||||
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
||||
If `False`, then this function returns just the final configuration object.
|
||||
|
||||
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
|
||||
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
|
||||
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
|
||||
subfolder (`str`, *optional*, defaults to `""`):
|
||||
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
||||
specify the folder name here.
|
||||
kwargs (`Dict[str, Any]`, *optional*):
|
||||
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
|
||||
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
|
||||
by the `return_unused_kwargs` keyword parameter.
|
||||
|
||||
Returns:
|
||||
[`GenerationConfig`]: The configuration object instantiated from this pretrained model.
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
>>> from transformers import GenerationConfig
|
||||
|
||||
>>> # Download configuration from huggingface.co and cache.
|
||||
>>> generation_config = GenerationConfig.from_pretrained("gpt2")
|
||||
|
||||
>>> # E.g. config was saved using *save_pretrained('./test/saved_model/')*
|
||||
>>> generation_config.save_pretrained("./test/saved_model/")
|
||||
>>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/")
|
||||
|
||||
>>> # You can also specify configuration names to your generation configuration file
|
||||
>>> generation_config.save_pretrained("./test/saved_model/", config_file_name="my_configuration.json")
|
||||
>>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/", "my_configuration.json")
|
||||
|
||||
>>> # If you'd like to try a minor variation to an existing configuration, you can also pass generation
|
||||
>>> # arguments to `.from_pretrained()`. Be mindful that typos and unused arguments will be ignored
|
||||
>>> generation_config, unused_kwargs = GenerationConfig.from_pretrained(
|
||||
... "gpt2", top_k=1, foo=False, return_unused_kwargs=True
|
||||
... )
|
||||
>>> generation_config.top_k
|
||||
1
|
||||
|
||||
>>> unused_kwargs
|
||||
{'foo': False}
|
||||
```"""
|
||||
config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME
|
||||
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", "")
|
||||
from_pipeline = kwargs.pop("_from_pipeline", None)
|
||||
from_auto_class = kwargs.pop("_from_auto", False)
|
||||
commit_hash = kwargs.pop("_commit_hash", None)
|
||||
|
||||
user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
|
||||
if from_pipeline is not None:
|
||||
user_agent["using_pipeline"] = from_pipeline
|
||||
|
||||
config_path = os.path.join(pretrained_model_name, config_file_name)
|
||||
config_path = str(config_path)
|
||||
|
||||
is_local = os.path.exists(config_path)
|
||||
if os.path.isfile(os.path.join(subfolder, config_path)):
|
||||
# Special case when config_path is a local file
|
||||
resolved_config_file = config_path
|
||||
is_local = True
|
||||
elif is_remote_url(config_path):
|
||||
configuration_file = config_path
|
||||
resolved_config_file = download_url(config_path)
|
||||
else:
|
||||
configuration_file = config_file_name
|
||||
try:
|
||||
# Load from local folder or from cache or download from model Hub and cache
|
||||
resolved_config_file = cached_file(
|
||||
pretrained_model_name,
|
||||
configuration_file,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
user_agent=user_agent,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
_commit_hash=commit_hash,
|
||||
)
|
||||
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
|
||||
except EnvironmentError:
|
||||
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
||||
# the original exception.
|
||||
raise
|
||||
except Exception:
|
||||
# For any other exception, we throw a generic error.
|
||||
raise EnvironmentError(
|
||||
f"Can't load the configuration of '{pretrained_model_name}'. If you were trying to load it"
|
||||
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same"
|
||||
f" name. Otherwise, make sure '{pretrained_model_name}' is the correct path to a directory"
|
||||
f" containing a {configuration_file} file"
|
||||
)
|
||||
|
||||
try:
|
||||
# Load config dict
|
||||
config_dict = cls._dict_from_json_file(resolved_config_file)
|
||||
config_dict["_commit_hash"] = commit_hash
|
||||
except (json.JSONDecodeError, UnicodeDecodeError):
|
||||
raise EnvironmentError(
|
||||
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
|
||||
)
|
||||
|
||||
if is_local:
|
||||
logger.info(f"loading configuration file {resolved_config_file}")
|
||||
else:
|
||||
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
|
||||
|
||||
return cls.from_dict(config_dict, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
||||
with open(json_file, "r", encoding="utf-8") as reader:
|
||||
text = reader.read()
|
||||
return json.loads(text)
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "GenerationConfig":
|
||||
"""
|
||||
Instantiates a [`GenerationConfig`] from a Python dictionary of parameters.
|
||||
|
||||
Args:
|
||||
config_dict (`Dict[str, Any]`):
|
||||
Dictionary that will be used to instantiate the configuration object.
|
||||
kwargs (`Dict[str, Any]`):
|
||||
Additional parameters from which to initialize the configuration object.
|
||||
|
||||
Returns:
|
||||
[`GenerationConfig`]: The configuration object instantiated from those parameters.
|
||||
"""
|
||||
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
||||
# Those arguments may be passed along for our internal telemetry.
|
||||
# We remove them so they don't appear in `return_unused_kwargs`.
|
||||
kwargs.pop("_from_auto", None)
|
||||
kwargs.pop("_from_pipeline", None)
|
||||
# The commit hash might have been updated in the `config_dict`, we don't want the kwargs to erase that update.
|
||||
if "_commit_hash" in kwargs and "_commit_hash" in config_dict:
|
||||
kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
||||
|
||||
config = cls(**config_dict)
|
||||
|
||||
to_remove = []
|
||||
for key, value in kwargs.items():
|
||||
if hasattr(config, key):
|
||||
setattr(config, key, value)
|
||||
to_remove.append(key)
|
||||
for key in to_remove:
|
||||
kwargs.pop(key, None)
|
||||
|
||||
logger.info(f"Generate config {config}")
|
||||
if return_unused_kwargs:
|
||||
return config, kwargs
|
||||
else:
|
||||
return config
|
||||
|
||||
def to_diff_dict(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Removes all attributes from config which correspond to the default config attributes for better readability and
|
||||
serializes to a Python dictionary.
|
||||
|
||||
Returns:
|
||||
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
|
||||
"""
|
||||
config_dict = self.to_dict()
|
||||
|
||||
# get the default config dict
|
||||
default_config_dict = GenerationConfig().to_dict()
|
||||
|
||||
serializable_config_dict = {}
|
||||
|
||||
# only serialize values that differ from the default config
|
||||
for key, value in config_dict.items():
|
||||
if key not in default_config_dict or key == "transformers_version" or value != default_config_dict[key]:
|
||||
serializable_config_dict[key] = value
|
||||
|
||||
return serializable_config_dict
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Serializes this instance to a Python dictionary.
|
||||
|
||||
Returns:
|
||||
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
||||
"""
|
||||
output = copy.deepcopy(self.__dict__)
|
||||
if "_commit_hash" in output:
|
||||
del output["_commit_hash"]
|
||||
|
||||
# Transformers version when serializing this file
|
||||
output["transformers_version"] = __version__
|
||||
|
||||
return output
|
||||
|
||||
def to_json_string(self, use_diff: bool = True) -> str:
|
||||
"""
|
||||
Serializes this instance to a JSON string.
|
||||
|
||||
Args:
|
||||
use_diff (`bool`, *optional*, defaults to `True`):
|
||||
If set to `True`, only the difference between the config instance and the default `GenerationConfig()`
|
||||
is serialized to JSON string.
|
||||
|
||||
Returns:
|
||||
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
||||
"""
|
||||
if use_diff is True:
|
||||
config_dict = self.to_diff_dict()
|
||||
else:
|
||||
config_dict = self.to_dict()
|
||||
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
||||
|
||||
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
|
||||
"""
|
||||
Save this instance to a JSON file.
|
||||
|
||||
Args:
|
||||
json_file_path (`str` or `os.PathLike`):
|
||||
Path to the JSON file in which this configuration instance's parameters will be saved.
|
||||
use_diff (`bool`, *optional*, defaults to `True`):
|
||||
If set to `True`, only the difference between the config instance and the default `GenerationConfig()`
|
||||
is serialized to JSON file.
|
||||
"""
|
||||
with open(json_file_path, "w", encoding="utf-8") as writer:
|
||||
writer.write(self.to_json_string(use_diff=use_diff))
|
@ -178,6 +178,7 @@ SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
|
||||
CONFIG_NAME = "config.json"
|
||||
FEATURE_EXTRACTOR_NAME = "preprocessor_config.json"
|
||||
IMAGE_PROCESSOR_NAME = FEATURE_EXTRACTOR_NAME
|
||||
GENERATION_CONFIG_NAME = "generation_config.json"
|
||||
MODEL_CARD_NAME = "modelcard.json"
|
||||
|
||||
SENTENCEPIECE_UNDERLINE = "▁"
|
||||
|
45
tests/generation/test_configuration_utils.py
Normal file
45
tests/generation/test_configuration_utils.py
Normal file
@ -0,0 +1,45 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Team Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a clone of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
from parameterized import parameterized
|
||||
from transformers.generation import GenerationConfig
|
||||
|
||||
|
||||
class LogitsProcessorTest(unittest.TestCase):
|
||||
@parameterized.expand([(None,), ("foo.json",)])
|
||||
def test_save_load_config(self, config_name):
|
||||
config = GenerationConfig(
|
||||
do_sample=True,
|
||||
temperature=0.7,
|
||||
length_penalty=1.0,
|
||||
bad_words_ids=[[1, 2, 3], [4, 5]],
|
||||
)
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
config.save_pretrained(tmp_dir, config_name=config_name)
|
||||
loaded_config = GenerationConfig.from_pretrained(tmp_dir, config_name=config_name)
|
||||
|
||||
# Checks parameters that were specified
|
||||
self.assertEqual(loaded_config.do_sample, True)
|
||||
self.assertEqual(loaded_config.temperature, 0.7)
|
||||
self.assertEqual(loaded_config.length_penalty, 1.0)
|
||||
self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]])
|
||||
|
||||
# Checks parameters that were not specified (defaults)
|
||||
self.assertEqual(loaded_config.top_k, 50)
|
||||
self.assertEqual(loaded_config.max_length, 20)
|
||||
self.assertEqual(loaded_config.max_time, None)
|
@ -12,8 +12,9 @@ docs/source/en/model_doc/byt5.mdx
|
||||
docs/source/en/model_doc/tapex.mdx
|
||||
docs/source/en/model_doc/donut.mdx
|
||||
docs/source/en/model_doc/encoder-decoder.mdx
|
||||
src/transformers/generation/utils.py
|
||||
src/transformers/generation/configuration_utils.py
|
||||
src/transformers/generation/tf_utils.py
|
||||
src/transformers/generation/utils.py
|
||||
src/transformers/models/albert/configuration_albert.py
|
||||
src/transformers/models/albert/modeling_albert.py
|
||||
src/transformers/models/albert/modeling_tf_albert.py
|
||||
|
Loading…
Reference in New Issue
Block a user