* Added (with random weights) in the comment before model initialization line
* Added configuration_bert_generation.py to utils/documentation_tests.txt
Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
* First draft
* Fix more things
* Improve more things
* Remove some head models
* Fix more things
* Add missing layers
* Remove tokenizer
* Fix more things
* Fix copied from statements
* Make all tests pass
* Remove print statements
* Remove files
* Fix README and docs
* Add integration test and fix organization
* Add tips
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Make tests faster, improve docs
* Fix doc tests
* Add model to toctree
* Add docs
* Add note about creating new checkpoint
* Remove is_decoder
* Make tests smaller, add docs
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* chore: initial commit
* chore: adding util methods
yet to work on the nn.functional.interpolate port with align_corener=True
* chore: refactor the utils
* used tf.compat.v1.image.resize to align the F.interpolate function
* added type hints to the method signatures
* added references to the gists where one 2 one alignment of torch and tf has been shown
* chore: adding the layers
* chore: porting all the layers from torch to tf
This is the initial draft, nothing is tested yet.
* chore: aligning the layers with reference to tf clip
* chore: aligning the modules
* added demaraction comments
* added copied and adapted from comments
* chore: aligning with CLIP
* chore: wrangling the layers to keep it tf compatible
* chore: aligning the names of the layers for porting
* chore: style changes
* chore: adding docs and inits
* chore: adding tfp dependencis
the code is taken from TAPAS
* chore: initial commit for testing
* chore: aligning the vision embeddings with the vit implementatino
* chore: changing model prefix
* chore: fixing the name of the model and the layer normalization test case
* chore: every test passes but the slow ones
* chore: fix style and integration test
* chore: moving comments below decorators
* chore: make fixup and fix-copies changes
* chore: adding the Vision and Text Model to check_repo
* chore: modifying the prefix name to align it with the torch implementation
* chore: fix typo in configuration
* choer: changing the name of the model variable
* chore: adding segmentation flag
* chore: gante's review
* chore: style refactor
* chore: amy review
* chore: adding shape_list to parts that have been copied from other snippets
* chore: init batchnorm with torch defaults
* chore: adding shape_list to pass the tests
* test fix: adding seed as 0
* set seed
* chore: changing the straight through trick to fix -ve dimensinos
* chore: adding a dimension to the loss
* chore: adding reviewers and contributors names to the docs
* chore: added changes after review
* chore: code quality fixup
* chore: fixing the segmentation snippet
* chore: adding to the layer calls
* chore: changing int32 to int64 for inputs of serving
* chore: review changes
* chore: style changes
* chore: remove from_pt=True
* fix: repo consistency
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fix bug in example and add to tests
* Fix failing tests
* Check the size of logits
* Code style
* Try again...
* Add expected loss for PerceiverForMaskedLM doctest
Co-authored-by: Steven Anton <antonstv@amazon.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* First draft
* More improvements
* Improve model, add custom CUDA code
* Import torch before
* Add script that imports custom layer
* Add everything in new ops directory
* Import custom layer in modeling file
* Fix ARCHIVE_MAP typo
* Creating the custom kernel on the fly.
* Import custom layer in modeling file
* More improvements
* Fix CUDA loading
* More improvements
* Improve conversion script
* Improve conversion script
* Make it work until encoder_outputs
* Make forward pass work
* More improvements
* Make logits match original implementation
* Make implementation also support single_scale model
* Add support for single_scale and dilation checkpoint
* Add support for with_box_refine model
* Support also two stage model
* Improve tests
* Fix more tests
* Make more tests pass
* Upload all models to the hub
* Clean up some code
* Improve decoder outputs
* Rename intermediate hidden states and reference points
* Improve model outputs
* Move tests to dedicated folder
* Improve model outputs
* Fix retain_grad test
* Improve docs
* Clean up and make test_initialization pass
* Improve variable names
* Add copied from statements
* Improve docs
* Fix style
* Improve docs
* Improve docs, move tests to model folder
* Fix rebase
* Remove DetrForSegmentation from auto mapping
* Apply suggestions from code review
* Improve variable names and docstrings
* Apply some more suggestions from code review
* Apply suggestion from code review
* better docs and variables names
* hint to num_queries and two_stage confusion
* remove asserts and code refactor
* add exception if two_stage is True and with_box_refine is False
* use f-strings
* Improve docs and variable names
* Fix code quality
* Fix rebase
* Add require_torch_gpu decorator
* Add pip install ninja to CI jobs
* Apply suggestion of @sgugger
* Remove DeformableDetrForObjectDetection from auto mapping
* Remove DeformableDetrModel from auto mapping
* Add model to toctree
* Add model back to mappings, skip model in pipeline tests
* Apply @sgugger's suggestion
* Fix imports in the init
* Fix copies
* Add CPU implementation
* Comment out GPU function
* Undo previous change
* Apply more suggestions
* Remove require_torch_gpu annotator
* Fix quality
* Add logger.info
* Fix logger
* Fix variable names
* Fix initializaztion
* Add missing initialization
* Update checkpoint name
* Add model to doc tests
* Add CPU/GPU equivalence test
* Add Deformable DETR to pipeline tests
* Skip model for object detection pipeline
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
* add: segformer utils and img. classification.
* add: segmentation layer.
* feat: working implementation of segformer.
* chore: remove unused variable.
* add test, remaining modifications.
* remove: unnecessary files.
* add: rest of the files.
Co-authored-by: matt <rocketknight1@gmail.com>
* chore: remove ModuleList comment.
* chore: apply make style.
* chore: apply make fixup-copies.
* add to check_repo.py
* add decode head to IGNORE_NON_TESTED
* chore: run make style.
* chore: PR comments.
* chore: minor changes to model doc.
* tests: reduction across samples.
* add a note on the space.
* sort importats.
* fix: reduction in loss computation.
* chore: align loss function with that of NER.
* chore: correct utils/documentation_tests.txt
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* chore: simplify the interpolation of logits in loss computation.
* chore: return transposed logits when return_dict=False.
* chore: add link to the tf fine-tuning repo.
* address pr comments.
* address niels's comments.
* remove from_pt=True since tf weights are in.
* remove comment from pt model.
* address niels's comments.
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Rought TF conversion outline
* Tidy up
* Fix padding differences between layers
* Add back embedder - whoops
* Match test file to main
* Match upstream test file
* Correctly pass and assign image_size parameter
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Add in MainLayer
* Correctly name layer
* Tidy up AdaptivePooler
* Small tidy-up
More accurate type hints and remove whitespaces
* Change AdaptiveAvgPool
Use the AdaptiveAvgPool implementation by @Rocketknight1, which correctly pools if the output shape does not evenly divide by input shape c.f. 9e26607e22 (r900109509)
Co-authored-by: From: matt <rocketknight1@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Use updated AdaptiveAvgPool
Co-authored-by: matt <rocketknight1@gmail.com>
* Make AdaptiveAvgPool compatible with CPU
* Remove image_size from configuration
* Fixup
* Tensorflow -> TensorFlow
* Fix pt references in tests
* Apply suggestions from code review - grammar and wording
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Add TFResNet to doc tests
* PR comments - GlobalAveragePooling and clearer comments
* Remove unused import
* Add in keepdims argument
* Add num_channels check
* grammar fix: by -> of
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Remove transposes - keep NHWC throughout forward pass
* Fixup look sharp
* Add missing layer names
* Final tidy up - remove from_pt now weights on hub
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* chore: initial commit
Copied the torch implementation of regnets and porting the code to tf step by step. Also introduced an output layer which was needed for regnets.
* chore: porting the rest of the modules to tensorflow
did not change the documentation yet, yet to try the playground on the model
* Fix initilizations (#1)
* fix: code structure in few cases.
* fix: code structure to align tf models.
* fix: layer naming, bn layer still remains.
* chore: change default epsilon and momentum in bn.
* chore: styling nits.
* fix: cross-loading bn params.
* fix: regnet tf model, integration passing.
* add: tests for TF regnet.
* fix: code quality related issues.
* chore: added rest of the files.
* minor additions..
* fix: repo consistency.
* fix: regnet tf tests.
* chore: reorganize dummy_tf_objects for regnet.
* chore: remove checkpoint var.
* chore: remov unnecessary files.
* chore: run make style.
* Update docs/source/en/model_doc/regnet.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* chore: PR feedback I.
* fix: pt test. thanks to @ydshieh.
* New adaptive pooler (#3)
* feat: new adaptive pooler
Co-authored-by: @Rocketknight1
* chore: remove image_size argument.
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: matt <rocketknight1@gmail.com>
* Empty-Commit
* chore: remove image_size comment.
* chore: remove playground_tf.py
* chore: minor changes related to spacing.
* chore: make style.
* Update src/transformers/models/regnet/modeling_tf_regnet.py
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
* Update src/transformers/models/regnet/modeling_tf_regnet.py
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
* chore: refactored __init__.
* chore: copied from -> taken from./g
* adaptive pool -> global avg pool, channel check.
* chore: move channel check to stem.
* pr comments - minor refactor and add regnets to doc tests.
* Update src/transformers/models/regnet/modeling_tf_regnet.py
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* minor fix in the xlayer.
* Empty-Commit
* chore: removed from_pt=True.
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Initial commit
* Make some fixes
* Make PT model full forward pass
* Drop TF & Flax implementation, fix copies etc
* Add Flax model and update some corresponding stuff
* Drop some TF things
* Update config and flax local attn
* Add encoder_attention_type to config
* .
* Update docs
* Do some cleansing
* Fix some issues -> make style; add some docs
* Fix position_bias + mask addition + Update tests
* Fix repo consistency
* Fix model consistency by removing flax operation over attn_mask
* [WIP] Add PT TGlobal LongT5
* .
* [WIP] Add flax tglobal model
* [WIP] Update flax model to use the right attention type in the encoder
* Fix flax tglobal model forward pass
* Make the use of global_relative_attention_bias
* Add test suites for TGlobal model
* Fix minor bugs, clean code
* Fix pt-flax equivalence though not convinced with correctness
* Fix LocalAttn implementation to match the original impl. + update READMEs
* Few updates
* Update: [Flax] improve large model init and loading #16148
* Add ckpt conversion script accoring to #16853 + handle torch device placement
* Minor updates to conversion script.
* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM
* gpu support + dtype fix
* Apply some suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies
* Remove caching logic for local & tglobal attention
* Apply another batch of suggestions from code review
* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx
* Fix converting script + revert config file change
* Revert "Remove caching logic for local & tglobal attention"
This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.
* Stash caching logic in Flax model
* Make side relative bias used always
* Drop caching logic in PT model
* Return side bias as it was
* Drop all remaining model parallel logic
* Remove clamp statements
* Move test files to the proper place
* Update docs with new version of hf-doc-builder
* Fix test imports
* Make some minor improvements
* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray
* Fix TGlobal for ONNX conversion + update docs
* fix _make_global_fixed_block_ids and masked neg value
* update flax model
* style and quality
* fix imports
* remove load_tf_weights_in_longt5 from init and fix copies
* add slow test for TGlobal model
* typo fix
* Drop obsolete is_parallelizable and one warning
* Update __init__ files to fix repo-consistency
* fix pipeline test
* Fix some device placements
* [wip]: Update tests -- need to generate summaries to update expected_summary
* Fix quality
* Update LongT5 model card
* Update (slow) summarization tests
* make style
* rename checkpoitns
* finish
* fix flax tests
Co-authored-by: phungvanduy <pvduy23@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
* initial commit
* add init file
* update globakl init
* update index and dummy objects
* style
* update modelling auto
* fix initi typo in src/transformers
* fix typo in modeling tf auto, opt was in wrong mapping name
* fixed a slow test : saved_model
* style
* fix positionnal embedding if no position id is provided
* update tf test
* update test flax requirements
* fixed serialization
* update
* update tf name to allow smooth convertion
* update flax tests
* style
* fix test typo
* fix tf typo test
* add xla for generate support in causal LM
* fixed bug
* cleaned tf tests
* style
* removed from PT for slow tests
* fix typp
* opt test as slow
* trying to fix GPT2 undefined
* correct documentation and add to test doc
* update tf doc
* fix doc
* fake commit
* Apply suggestions from code review
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* update test based on review
* merged main layer for functionning test
* fixup + quality
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* update long comment
* make fix copies
Co-authored-by: Arthur <arthur@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Make forward pass work
* More improvements
* Remove unused imports
* Remove timm dependency
* Improve loss calculation of token classifier
* Fix most tests
* Add docs
* Add model integration test
* Make all tests pass
* Add LayoutLMv3FeatureExtractor
* Improve integration test + make fixup
* Add example script
* Fix style
* Add LayoutLMv3Processor
* Fix style
* Add option to add visual labels
* Make more tokenizer tests pass
* Fix more tests
* Make more tests pass
* Fix bug and improve docs
* Fix import of processors
* Improve docstrings
* Fix toctree and improve docs
* Fix auto tokenizer
* Move tests to model folder
* Move tests to model folder
* change default behavior add_prefix_space
* add prefix space for fast
* add_prefix_spcae set to True for Fast
* no space before `unique_no_split` token
* add test to hightligh special treatment of added tokens
* fix `test_batch_encode_dynamic_overflowing` by building a long enough example
* fix `test_full_tokenizer` with add_prefix_token
* Fix tokenizer integration test
* Make the code more readable
* Add tests for LayoutLMv3Processor
* Fix style
* Add model to README and update init
* Apply suggestions from code review
* Replace asserts by value errors
* Add suggestion by @ducviet00
* Add model to doc tests
* Simplify script
* Improve README
* a step ahead to fix
* Update pair_input_test
* Make all tokenizer tests pass - phew
* Make style
* Add LayoutLMv3 to CI job
* Fix auto mapping
* Fix CI job name
* Make all processor tests pass
* Make tests of LayoutLMv2 and LayoutXLM consistent
* Add copied from statements to fast tokenizer
* Add copied from statements to slow tokenizer
* Remove add_visual_labels attribute
* Fix tests
* Add link to notebooks
* Improve docs of LayoutLMv3Processor
* Fix reference to section
Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* add inference example to LayoutLMv2ForQuestionAnswering, passing doctest
* add loss example to LayoutLMv2ForQuestionAnswering, passing doctest
* Add correct doctest for LayoutLMv2ForTokenClassification, passing doctest
* add correct doctest for LayoutLMv2ForSequenceClassification, passing test
* add correct doctest for LayoutLMv2Model, passing test
* make fixup
* fix to address review comments
* make style
* fix doctest line break issue, add to documentaiton_tests.txt, address review comments
* move comment about layoutlmv2 dependencies to the doc page
* format doc page as suggested
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* delete extraneous backtick
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* First draft
* Add YolosForObjectDetection
* Make forward pass work
* Add mid position embeddings
* Add interpolation of position encodings
* Add expected values
* Add YOLOS to tests
* Add integration test
* Support tiny model as well
* Support all models in conversion script
* Remove mid_pe_size attribute
* Make more tests pass
* Add model to README and fix config
* Add copied from statements
* Rename base_model_prefix to vit
* Add missing YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP
* Apply suggestions from code review
* Apply more suggestions from code review
* Convert remaining checkpoints
* Improve docstrings
* Add YolosFeatureExtractor
* Add feature extractor to docs
* Add corresponding tests
* Fix style
* Fix docs
* Apply suggestion from code review
* Fix bad rebase
* Fix some more bad rebase
* Fix missing character
* Improve docs and variable names
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* Add doctest BERT
* make fixup
* fix typo
* change checkpoints
* make fixup
* define doctest output value, update doctest for mobilebert
* solve fix-copies
* update QA target start index and end index
* change checkpoint for docs and reuse defined variable
* Update src/transformers/models/bert/modeling_tf_bert.py
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* make fixup
* Add Doctest for Albert and Bigbird
* make fixup
* overwrite examples for Albert and Bigbird
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update longer examples for Bigbird
* using examples from squad_v2
* print out example text
* change name token-classification-big-bird checkpoint to random
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Improve CTRL doctests
* Fix `CTRLForSequenceClassification` flakiness with inconsistent losses
* Remove unused
* Fixup
* Add CTRL to documentation_tests.txt
* Fix control code not being first
* Add output assertions
* Change from sshleifer/tiny-ctrl -> ctrl
* Run `make fixup`
* apply `list` to output logits shape for clarity
* Reduce output loss precision to make assertion more robust
* Add assertion of control code being first
* Fix docstyle
* upper case sentence following control code
* Weird bug fixes
* Add a better generation example
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Required the values GPTJ unfortunately cannot run the model =)
* Added the file to the doc tests
* Run Fixup and Style
* Fixed with the test versions of gptj. Ran Style and Fixup.
* Trigger ci
* A Minor Change to License
* Fixed spacing added to the benchmark_utils. Then refactored tests to const variables.
* Removed strings that were included as default parameters anyways.
Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
* First Pass All Tests Pass
* WIP
* Adding file to documentation tests
* Change the base model for the example in the doc test.
* Fix Code Styling by running
make fixup
* Called Style
* Reverted to gpt2 model rather than distill gpt2
Then used a token classification model over a sequence model for an example.
* Fix Styling Issue
* Hopefully ignores the formatting issue.
Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
* Add TapexTokenizer
* Improve docstrings and provide option to provide answer
* Remove option for pretokenized inputs
* Add TAPEX to README
* Fix copies
* Remove option for pretokenized inputs
* Initial commit: add tapex fine-tuning examples on both table-based question answering and table-based fact verification.
* - Draft a README file for running the script and introducing some background.
- Remove unused code lines in tabfact script.
- Disable the deafult `pad_to_max_length` option which is memory-consuming.
* * Support `as_target_tokenizer` function for TapexTokenizer.
* Fix the do_lower_case behaviour of TapexTokenizer.
* Add unit tests for target scenarios and cased/uncased scenarios for both source and target.
* * Replace the label BartTokenizer with TapexTokenizer's as_target_tokenizer function.
* Fix typos in tapex example README.
* * fix the evaluation script - remove the property `task_name`
* * Make the label space more clear for tabfact tasks
* * Using a new fine-tuning script for tapex-base on tabfact.
* * Remove the lowercase code outside the tokenizer - we use the tokenizer to control whether do_lower_case
* Guarantee the hyper-parameter can be run without out-of-memory on 16GB card and report the new reproduced number on wikisql
* * Remove the default tokenizer_name option.
* Provide evaluation command.
* * Support for WikiTableQuestion dataset.
* Fix a typo in README.
* * Fix the datasets's key name in WikiTableQuestions
* Run make fixup and move test to folder
* Fix quality
* Apply suggestions from code review
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Apply suggestions from code review
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply some more suggestions from code review
* Improve docstrings
* Overwrite failing test
* Improve comment in example scripts
* Fix rebase
* Add TAPEX to Auto mapping
* Add TAPEX to auto config mappings
* Put TAPEX higher than BART in auto mapping
* Add TAPEX to doc tests
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: SivilTaram <qianlxc@outlook.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
* up
* up
* up
* fix
* yeh
* ups
* Empty test commit
* correct quicktour
* correct
* correct
* up
* up
* uP
* uP
* up
* up
* uP
* up
* up
* up
* up
* up
* up
* up
* up
* up
* up
* Update src/transformers/models/van/modeling_van.py
* finish
* apply suggestions
* remove folder
* revert to daily testing
* first commit
* ResNet model correctly implemented.
basic modeling + weights conversion is done
removed unused doc
mdx file
doc and conversion script
added feature_extractor to auto
test
minor changes + style + quality
doc
test
Delete process.yml
A left over from my attempt of running circleci locally
* minor changes
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* new test format
* minor changes from conversations
* minor changes from conversations
* make style + quality
* readded the tests
* test + README
* minor changes from conversations
* error in README
* make fix-copies
* removed regression for classification head
* make quality
* fixed loss control flow
* fixed loss control flow
* resolved conversations
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* READMEs
* index.mdx
* minor changes
* updated tests and models
* unused import
* outputs
* Update docs/source/model_doc/resnet.mdx
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* added embeddings_size
* Apply suggestions from code review
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* conversation
* added push to hub
* test
* embedding_size
* make fix-copies
* resolved conversations
* CI
* changed organization
* minor changes
* CI
* minor changes
* conversations
* conversation
* doc
* tests
* removed unused docstring
* conversation
* removed unused outputs
* CI
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* fix_torch_device_generate_test
* remove @
* doc tests
* up
* up
* fix doctests
* adapt files
* finish refactor
* up
* save intermediate
* add more logic
* new change
* improve
* next try
* next try
* next try
* next try
* fix final spaces
* fix final spaces
* improve
* renaming
* correct more bugs
* finish wavlm
* add comment
* run on test runner
* finish all speech models
* adapt
* finish
* Doctests
* Limit to 4 decimals
* Try with separate PT/TF tests
* Remove test for TF
* Ellips the predictions
* Doctest continue on failure
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>