mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
Added Docstrings for Deberta and DebertaV2 [PyTorch] (#18610)
* Added Doctest for Deberta Pytorch
* Added path in documentation test file
* Added docstrings for DebertaV2
* Revert "Added docstrings for DebertaV2"
This reverts commit 307185e62a
.
* Added DebertaV2 Docstrings
This commit is contained in:
parent
a98f6a1da0
commit
5727dfcebe
@ -41,6 +41,32 @@ _CONFIG_FOR_DOC = "DebertaConfig"
|
||||
_TOKENIZER_FOR_DOC = "DebertaTokenizer"
|
||||
_CHECKPOINT_FOR_DOC = "microsoft/deberta-base"
|
||||
|
||||
# Masked LM docstring
|
||||
_CHECKPOINT_FOR_MASKED_LM = "lsanochkin/deberta-large-feedback"
|
||||
_MASKED_LM_EXPECTED_OUTPUT = "' Paris'"
|
||||
_MASKED_LM_EXPECTED_LOSS = "0.54"
|
||||
|
||||
# TokenClassification docstring
|
||||
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbsamu/deberta-base-finetuned-ner"
|
||||
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
||||
"['LABEL_0', 'LABEL_0', 'LABEL_0', 'LABEL_0', 'LABEL_0', 'LABEL_0', 'LABEL_0', 'LABEL_0', 'LABEL_0', 'LABEL_0',"
|
||||
" 'LABEL_0', 'LABEL_0']"
|
||||
)
|
||||
_TOKEN_CLASS_EXPECTED_LOSS = 0.04
|
||||
|
||||
# QuestionAnswering docstring
|
||||
_CHECKPOINT_FOR_QA = "Palak/microsoft_deberta-large_squad"
|
||||
_QA_EXPECTED_OUTPUT = "' a nice puppet'"
|
||||
_QA_EXPECTED_LOSS = 0.14
|
||||
_QA_TARGET_START_INDEX = 12
|
||||
_QA_TARGET_END_INDEX = 14
|
||||
|
||||
# SequenceClassification docstring
|
||||
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "hf-internal-testing/tiny-random-deberta"
|
||||
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
|
||||
_SEQ_CLASS_EXPECTED_LOSS = "0.69"
|
||||
|
||||
|
||||
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||||
"microsoft/deberta-base",
|
||||
"microsoft/deberta-large",
|
||||
@ -1032,9 +1058,12 @@ class DebertaForMaskedLM(DebertaPreTrainedModel):
|
||||
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_MASKED_LM,
|
||||
output_type=MaskedLMOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
mask="[MASK]",
|
||||
expected_output=_MASKED_LM_EXPECTED_OUTPUT,
|
||||
expected_loss=_MASKED_LM_EXPECTED_LOSS,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
@ -1173,9 +1202,11 @@ class DebertaForSequenceClassification(DebertaPreTrainedModel):
|
||||
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
||||
output_type=SequenceClassifierOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
||||
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
@ -1281,9 +1312,11 @@ class DebertaForTokenClassification(DebertaPreTrainedModel):
|
||||
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
|
||||
output_type=TokenClassifierOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
|
||||
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
@ -1356,9 +1389,13 @@ class DebertaForQuestionAnswering(DebertaPreTrainedModel):
|
||||
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_QA,
|
||||
output_type=QuestionAnsweringModelOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
expected_output=_QA_EXPECTED_OUTPUT,
|
||||
expected_loss=_QA_EXPECTED_LOSS,
|
||||
qa_target_start_index=_QA_TARGET_START_INDEX,
|
||||
qa_target_end_index=_QA_TARGET_END_INDEX,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
|
@ -43,6 +43,31 @@ _CONFIG_FOR_DOC = "DebertaV2Config"
|
||||
_TOKENIZER_FOR_DOC = "DebertaV2Tokenizer"
|
||||
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
|
||||
|
||||
# Masked LM docstring
|
||||
_CHECKPOINT_FOR_MASKED_LM = "hf-internal-testing/tiny-random-deberta-v2"
|
||||
_MASKED_LM_EXPECTED_OUTPUT = "'enberry'"
|
||||
_MASKED_LM_EXPECTED_LOSS = "11.85"
|
||||
|
||||
# TokenClassification docstring
|
||||
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-random-deberta-v2"
|
||||
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
||||
"['LABEL_0', 'LABEL_0', 'LABEL_1', 'LABEL_0', 'LABEL_0', 'LABEL_1', 'LABEL_0', 'LABEL_0', 'LABEL_0', 'LABEL_0',"
|
||||
" 'LABEL_0', 'LABEL_0']"
|
||||
)
|
||||
_TOKEN_CLASS_EXPECTED_LOSS = 0.61
|
||||
|
||||
# QuestionAnswering docstring
|
||||
_CHECKPOINT_FOR_QA = "hf-internal-testing/tiny-random-deberta-v2"
|
||||
_QA_EXPECTED_OUTPUT = "'was Jim Henson? Jim Henson was'"
|
||||
_QA_EXPECTED_LOSS = 2.47
|
||||
_QA_TARGET_START_INDEX = 2
|
||||
_QA_TARGET_END_INDEX = 9
|
||||
|
||||
# SequenceClassification docstring
|
||||
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "hf-internal-testing/tiny-random-deberta-v2"
|
||||
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
|
||||
_SEQ_CLASS_EXPECTED_LOSS = "0.69"
|
||||
|
||||
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||||
"microsoft/deberta-v2-xlarge",
|
||||
"microsoft/deberta-v2-xxlarge",
|
||||
@ -1136,9 +1161,12 @@ class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
|
||||
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_MASKED_LM,
|
||||
output_type=MaskedLMOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
mask="[MASK]",
|
||||
expected_output=_MASKED_LM_EXPECTED_OUTPUT,
|
||||
expected_loss=_MASKED_LM_EXPECTED_LOSS,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
@ -1278,9 +1306,11 @@ class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
|
||||
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
||||
output_type=SequenceClassifierOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
||||
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
@ -1387,9 +1417,11 @@ class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
|
||||
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
|
||||
output_type=TokenClassifierOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
|
||||
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
@ -1463,9 +1495,13 @@ class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
|
||||
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
processor_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_QA,
|
||||
output_type=QuestionAnsweringModelOutput,
|
||||
config_class=_CONFIG_FOR_DOC,
|
||||
expected_output=_QA_EXPECTED_OUTPUT,
|
||||
expected_loss=_QA_EXPECTED_LOSS,
|
||||
qa_target_start_index=_QA_TARGET_START_INDEX,
|
||||
qa_target_end_index=_QA_TARGET_END_INDEX,
|
||||
)
|
||||
def forward(
|
||||
self,
|
||||
|
@ -242,7 +242,7 @@ PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
|
||||
>>> num_labels = len(model.config.id2label)
|
||||
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)
|
||||
|
||||
>>> labels = torch.tensor(1)
|
||||
>>> labels = torch.tensor([1])
|
||||
>>> loss = model(**inputs, labels=labels).loss
|
||||
>>> round(loss.item(), 2)
|
||||
{expected_loss}
|
||||
|
@ -26,6 +26,8 @@ src/transformers/models/ctrl/modeling_ctrl.py
|
||||
src/transformers/models/cvt/modeling_cvt.py
|
||||
src/transformers/models/data2vec/modeling_data2vec_audio.py
|
||||
src/transformers/models/data2vec/modeling_data2vec_vision.py
|
||||
src/transformers/models/deberta/modeling_deberta.py
|
||||
src/transformers/models/deberta_v2/modeling_deberta_v2.py
|
||||
src/transformers/models/deit/modeling_deit.py
|
||||
src/transformers/models/deit/modeling_tf_deit.py
|
||||
src/transformers/models/detr/modeling_detr.py
|
||||
|
Loading…
Reference in New Issue
Block a user