Adds FocalNet by Microsoft to transformers
---------
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: alaradirik <alaradirik@gmail.com>
* Add model to doc tests
* Remove generate and replace by prepare_inputs_for_generation
* More fixes
* Remove print statements
* Update integration tests
* Fix generate
* Remove model from auto mapping
* Use auto processor
* Fix integration tests
* Fix test
* Add inference code snippet
* Remove is_encoder_decoder
* Update docs
* Remove notebook link
generator(model="openai/whisper-large") always returns error. As the error says the generator expects an input, just like the .flac file above. Even the generator object has no parameters called model. While there are parameters which can be passed to generator like 'batch_size' but to pass a model i believe the the parameter has to be passed while instantiating the pipeline and not as a parameter to the instance.
I believe the correct term should be:
generator = pipeline(model="openai/whisper-large", device=0)
* resolve conflicts
* rebase and make style
* test
* test
* test
* rebase and make style
* rebase and make style
* tests
* tests
* rewrite some functions
* rebase and make style
* fix load_tf_weights_in_cpmant
* reformat some unrelated files
* upgrade quality
* fix some bugs & docstring
* add models and tests
* solve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* tests
* resolve conflicts
* resolve conflicts
* fix load_tf_weights_in_cpmant
* reformat some unrelated files
* upgrade quality
* fix some bugs & docstring
* save resolution
* make style
* delete redefinition code
* reformat function
* reformat
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* tests
* resolve conflicts
* resolve conflicts
* fix load_tf_weights_in_cpmant
* reformat some unrelated files
* upgrade quality
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* resolve conflicts
* fix load_tf_weights_in_cpmant
* reformat some unrelated files
* upgrade quality
* resolve conflicts
* make style
* fix bugs and refactor
* modify docstrings and make style
* unify import format in __init__.py
* fix import-altclp bug
* fix copies to update index.md
* fix unused config parameters
* fix unused config parameters
* fix unused config parameters
* update README_ja.md
* dummy commit for unit test
* fix attention mask
* add CPMAntTokenizer&-Fast to auto-mapping
* drop redundant changes in README_ko
* fix defaults in docstring
* fix use_cache and some docstring
* add missing args in tokenizer
* modify tester inheritance
* add is_jieba_available
* fix some bugs
* make style and fix-copies
* add doctests
* skip integration tests
* add is_jieba_available
* fix bugs in common tests
* adjust docstrings and make style
* add argument docstring
* adjust code to some specifications
* make style and fix-copies
* add fast tokenization test
* dummy commit for unit test
* dummy commit for unit test
* dummy commit for unit test
* normalize some comments and names
* Bert->CPMAnt
* camel names and drop redundant codes
* make style and fix-coies
* add CpmTokenizerFast _import_structure
* drop cpmanttokenizerfast in model_doc
* fix some problems
* fix CPMAnt tokenization for common test
* make style and fixup
* fix copies and fixup
* fix bugs in tokenization test
* dummy commit for connection failure in unittest
* fix copies
* drop trailing comma
* fix decorator in tests
* dummy commit for connection failure in unittest
---------
Co-authored-by: Gong Baitao <gongbaitao11@gmail.com>
* Adding Llama FastTokenizer support.
- Requires https://github.com/huggingface/tokenizers/pull/1183 version
- Only support byte_fallback for llama, raise otherwise (safety net).
- Lots of questions are special tokens
How to test:
```python
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers import AutoTokenizer
from tokenizers import Tokenizer
tokenizer = AutoTokenizer.from_pretrained("huggingface/llama-7b")
if False:
new_tokenizer = Tokenizer.from_file("tok.json")
else:
new_tokenizer = convert_slow_tokenizer(tokenizer)
new_tokenizer.save("tok.json")
strings = [
"This is a test",
"生活的真谛是",
"生活的真谛是[MASK]。",
# XXX: This one is problematic because of special tokens
# "<s> Something something",
]
for string in strings:
encoded = tokenizer(string)["input_ids"]
encoded2 = new_tokenizer.encode(string).ids
assert encoded == encoded2, f"{encoded} != {encoded2}"
decoded = tokenizer.decode(encoded)
decoded2 = new_tokenizer.decode(encoded2)
assert decoded.strip() == decoded2, f"{repr(decoded)} != {repr(decoded2)}"
```
The converter + some test script.
The test script.
Tmp save.
Adding Fast tokenizer + tests.
Adding the tokenization tests.
Correct combination.
Small fix.
Fixing tests.
Fixing with latest update.
Rebased.
fix copies + normalized added tokens + copies.
Adding doc.
TMP.
Doc + split files.
Doc.
Versions + try import.
Fix Camembert + warnings -> Error.
Fix by ArthurZucker.
Not a decorator.
* Fixing comments.
* Adding more to docstring.
* Doc rewriting.
* Initial commit
* more stash commit
* Yet another stash commit
* yet more stash commit
* Mostly working except for docs / repo consistency
* Stop importing model list from torch file
* Add TF BLIP models to docs
* Add auto classes
* Move get_text_features and get_image_features
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/blip/test_modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/blip/test_modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update tests/models/blip/test_modeling_tf_blip_text.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Use channels_last convolutions in TF (better performance + compatibility)
* Remove _shape function
* Move multi-line statement to one line in PT + TF
* Specify tf.keras.layers instead of importing from it
* Remove test_gradient_checkpointing and empty test_training methods
* move some multi-line statements to one line
* Update docstring for generate
* Remove pruned heads set
* Remove self.seq_len_dim
* Fixed issues with loss computation, should resolve some tests. Also ensured that the PT version follows the config for output_attentions and output_hidden_states
* ensure original model follows config in more cases
* Skip the same cross-attention tests in the PT tests - didn't realize we did it twice!
* Add training args throughout the models and layers
* make fixup
* Fix docstring for inputs_embeds
* Add docstring for is_decoder
* Add docstrings to text models
* Remove redundant computation
* Add unpack_inputs / keras_serializable
* Add modeling_tf_blip to doctests
* Add config classes for keras serialization
* Changes to allow model porting with pt-to-tf
* Quick fix to decoder head and test tweaks
* Revert an issue with masking the embeddings outputs
* Allow missing keys in some equivalence tests (for unused layers)
* Add tf-pt equivalence tests back in
* Update src/transformers/models/blip/modeling_tf_blip.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/blip/modeling_tf_blip_text.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make fixup
* Refactor invert_attention_mask out into tf_utils
* Re-enable cross-tests on the PT side too
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Initial commit
* update modeling code
* update doc
* add functions necessary
* fix impotrs
* revert changes
* fixup
* more styling to get going
* remove standalone encoder
* update code
* styling
* fix config and model
* update code and some refactoring
* make more tests pass
* Adding NLLB-200 - MoE - 54.5B for no language left behind
Fixes#21300
* fix mor common tests
* styke
* update testing file
* update
* update
* Router2 doc
* update check config with sparse layer
* add dummy router
* update current conversion script
* create on the fly conversion script
* Fixup
* style
* style 2
* fix empty return
* fix return
* Update default config sparse layers
* easier to create sparse layers
* update
* update conversion script
* update modeling
* add to toctree
* styling
* make ruff happy
* update docstring
* update conversion script
* update, will break tests but impelemting top2
* update
* ❗local groups are supported here
* ⚠️ Support for local groups is now removed ⚠️
This is because it has to work with model parallelism that we do not support
* finish simplificaiton
* Fix forward
* style
* fixup
* Update modelling and test, refactoring
* update tests
* remove final layer)norm as it is done in the FF
* routing works! Logits test added
* nit in test
* remove top1router
* style
* make sure sparse are tested. Had to change route_tokens a liottle bit
* add support for unslip models when converting
* fixup
* style
* update test s
* update test
* REFACTOR
* encoder outputs match!
* style
* update testing
* 🎉encoder and decoder logits match 🎉
* styleing
* update tests
* cleanup tests
* fix router test and CIs
* cleanup
* cleanup test styling
* fix tests
* Finally the generation tests match!
* cleanup
* update test
* style testing file
* remove script
* cleanup
* more cleanup
* nits
* update
* NLLB tokenizer is wrong and will be fixed soon
* use LongTensors
* update tests
* revert some small changes
* fix second expert sampling and batch prioritized routing
* update tests
* finish last tests
* make ruff happy
* update
* ruff again
* style
* Update docs/source/en/model_doc/nllb-moe.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Updates based on review
* style and fix import issue
* nit
* more nits
* cleanup
* styling
* update test_seconde_expert_policy
* fix name
* last nit on the markdown examples
---------
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* add mega file structure and plain pytorch version of mega source code
* added config class with old naming conventions
* filled in mega documentation
* added config class and embeddings with optional token types
* updated notes
* starting the conversion process, deleted intermediate and added use_cache back to config
* renamed config attributes in modeling_mega.py
* checkpointing before refactoring incremental decoding functions
* removed stateful incremental key/values for EMA and self-attention
* refactored MovingAverageGatedAttention to remove stateful k/v history and use unified attention mask
* MovingAverageGatedAttention works with incremental decoding + past values, added sequence length enforcement
* more comments in MovingAverageGatedAttention + checkpointing before GatedCrossAttention
* bug fix in attention mask handling in MovingAverageGatedAttention
* removed incremental state from GatedCrossAttention and removed IncrementalState class
* finished gated cross attention and got MegaLayer working
* fixed causal masking in mega decoder
* fixed how padding and causal masks are passed through MegaLayer with and without k/v caching
* finished MegaModel; tested with encoder, decoder-only, and cross-attention type inputs; started work on downstream classes; removed mentions of position_ids
* added optional dense hidden layer for masked and causal LM classes
* docstring updates in MultiHeadEMA and GatedCrossAttention, removed unnecessary inputs in cross-attention
* removed before_attn_fn in Mega class and updated docstrings and comments up to there
* bug fix in MovingAverageGatedAttention masking
* working conversion of MLM checkpoint in scratchpad script -- perfect matches
* moved arg for hidden dense layer in LM head to config; discovered issue where from_pretrained is renaming gamma and beta parameters
* renamed gamma and beta parameters to avoid HF renaming when loading from checkpoint
* finished checkpoint conversion script
* cleanup old class in mega config script
* removed 'copied from' statements and passing integration tests
* added num_attention_heads=1 to config for integration compatibility, decoder tests working, generation tests failing
* fixed tuple output of megamodel
* all common tests passing after fixing issues in decoder, gradient retention, and initialization
* added mega-specific tests, ready for more documentation and style checks
* updated docstrings; checkpoint before style fixes
* style and quality checks, fixed initialization problem in float_tensor, ready for PR
* added mega to toctree
* removed unnecessary arg in megaconfig
* removed unused arg and fixed code samples with leftover roberta models
* Apply suggestions from code review
Applied all suggestions except the one renaming a class, as I'll need to update that througout
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fixed issue where .view breaks batch dimension, conversion script fixed with absolute imports, updated readme with Mega->MEGA
* removed asserts in Mega code, renamed sequencenorm, gatedcrossattention, and NFFN, replaced get_activation_fn with ACTFN, and added sequencenorm to layer norms
* reformatted .forward() docstrings to match style and removed unused mask input in cross-attention
* removed all reset_parameters() methods and rolled into MegaPreTrainedModel._init_weights()
* renamed all single-letter variables and improved readability in tensor size comments, Mega->MEGA in 2 documentation files
* variable names in NFFN
* manual Mega->MEGA changes in docs
* Mega->MEGA in config auto
* style and quality fixes
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* renamed parameters and variables with confusing names, added copied from statements, moved fft conv to its own method, other cleanup from PR comments
* commit before dealing with merge conflicts
* made new attention activation functions available in ACT2FN and added generation test from OPT
* style and quality in activations and tests
* documentation fixes, renaming variables in dropout and rotary positions, used built-in causal masking, encoders->layers in MegaModel, moved comments into docstrings
* style and quality fixes after latest updates, before rotary position ids
* causal mask in MegaBlock docstring + added missing device passing
* Apply suggestions from code review
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* added Mega prefixes where missing, reverted MegaSequenceNorm to if-else, other module renaming requested in PR
* style and quality fixes + readme updates pointing to main
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>